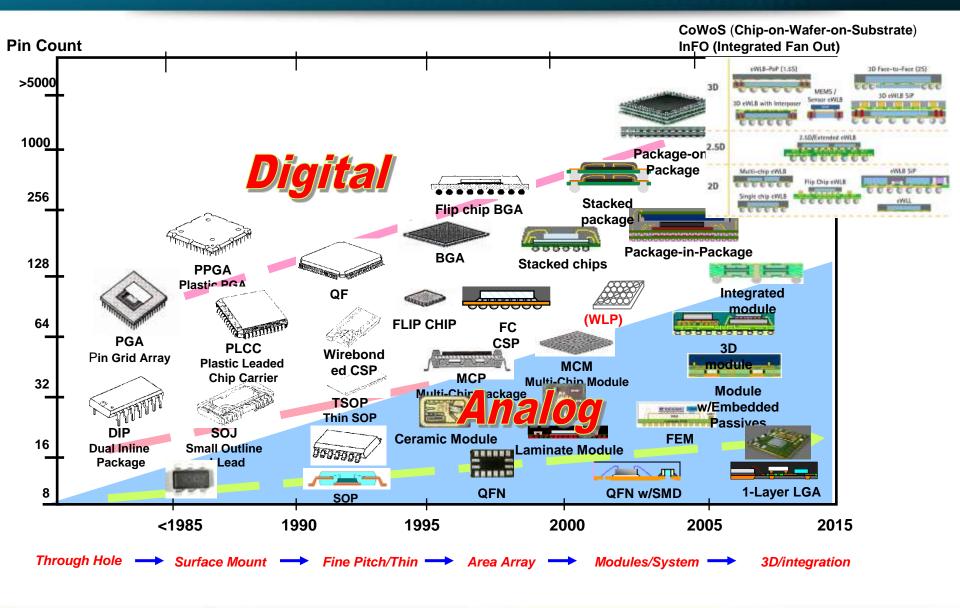


EPTC Professional Development Course

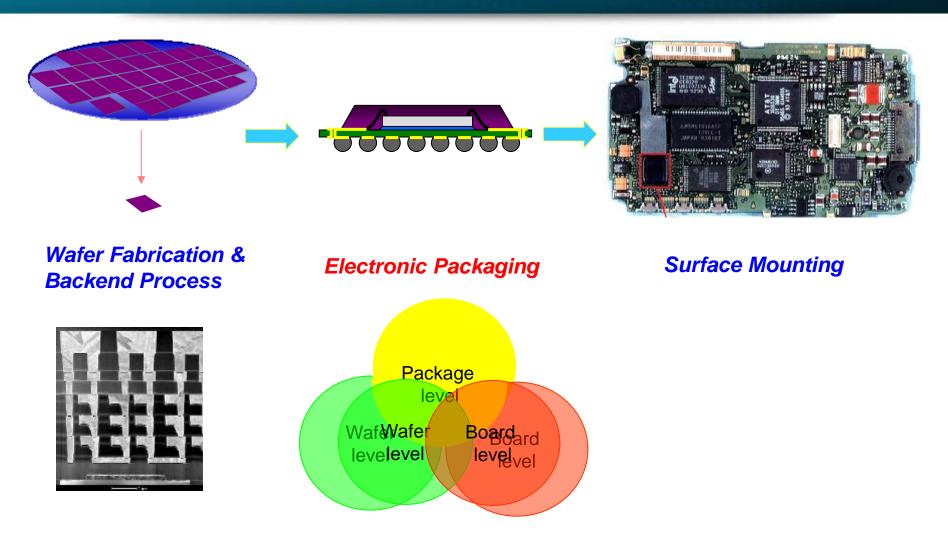
Reliability Mechanics and Modeling for IC Packaging – Theory, Implementation and Practices

December 4, 2019

¹Xuejun Fan, and ²Ricky Lee ¹Lamar University ²Hong Kong University of Science and Technology <u>xuejun.fan@lamar.edu</u>, <u>rickylee@ust.hk</u>

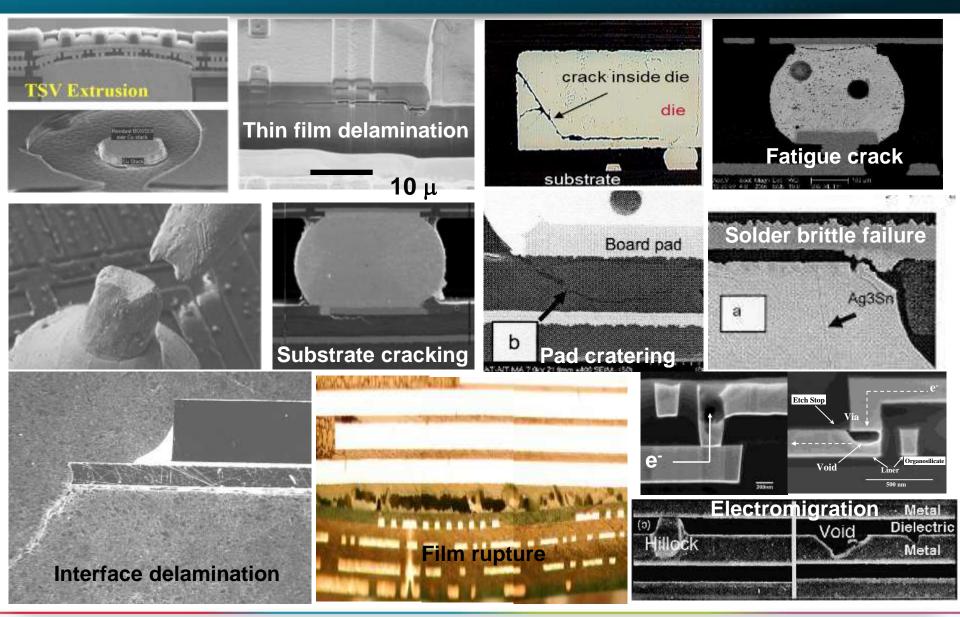

- Introduction
- Temperature Loading
- Mechanical Loading
- Moisture Loading
- Electrical Current Loading Multi-Physics Modeling
- Summary

Introduction

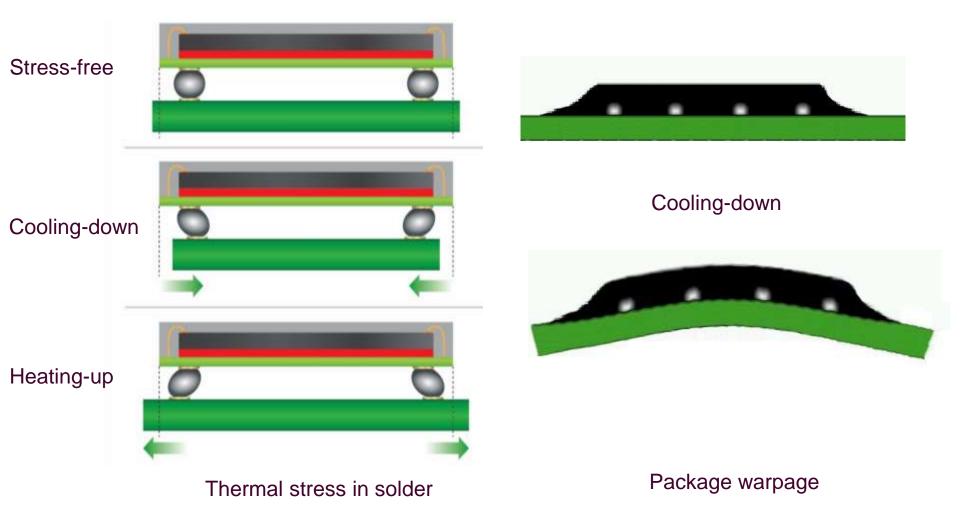

- Temperature Loading
- Mechanical Loading
- Moisture Loading
- Electrical Current Loading Multi-Physics Modeling

• Summary

Electronic Packaging Evolution



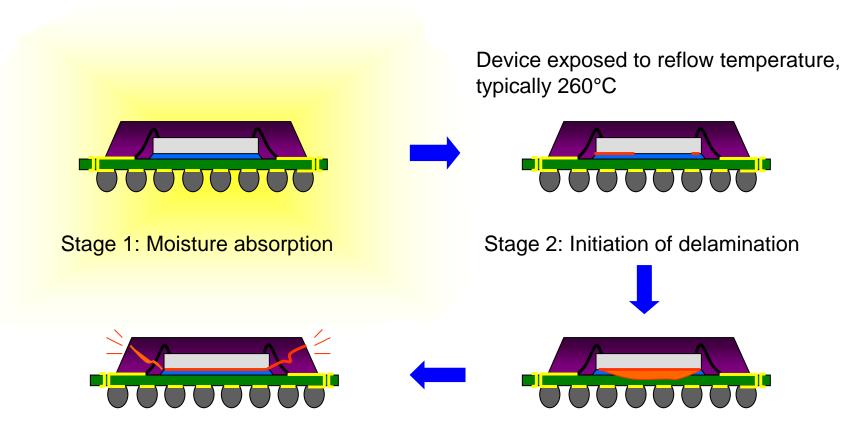
Wafer, Package, and Board Levels


 Design of a package must consider the interactions among wafer, package, and board (e.g. CPI – chip-package-interaction).

Examples of Failures

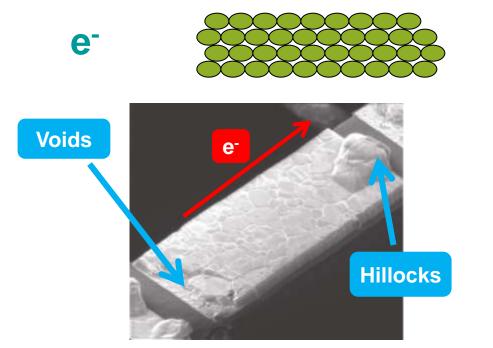
IEEE EPTC 2019 – Singapore

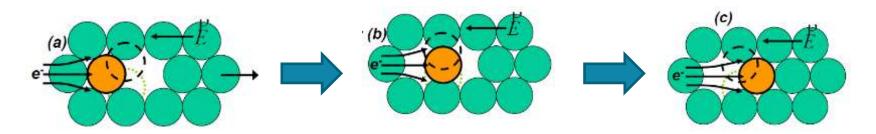
Thermal-mechanical Stress


7

Mechanical Load

• Handheld electronic products are susceptible to drop impact failure.


Moisture-induced Failure


Stage 4: Package cracking and vapor release

Stage 3: Delamination propagation

Electrical Current Stressing

Electron wind

Organization of Course

Four modules

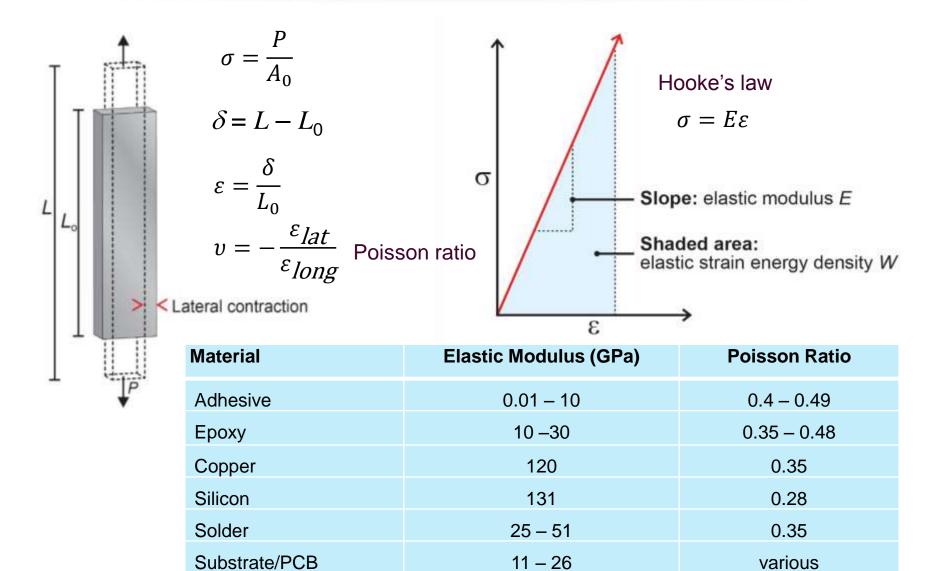
- -Temperature loading
 - Thermal mismatch, temperature gradient, etc.
- -Mechanical loading
 - Drop and impact, bend, etc.
- -Moisture loading
 - Moisture diffusion, vapor pressure, swelling.
- -Electrical current loading combined loading
 - Electrical-thermal, electrical-thermal-mechanical, and electromigration (electrical-thermal-mechanical-mass transport)

Theory, implementation, and best practices.

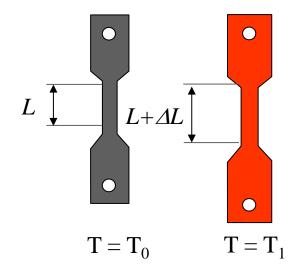
- Temperature Loading
- Mechanical Loading
- Moisture Loading
- Electrical Current Loading Multi-Physics Modeling

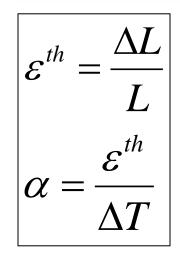
• Summary

Basic concepts and analytical solutions

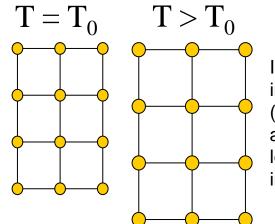

Applications

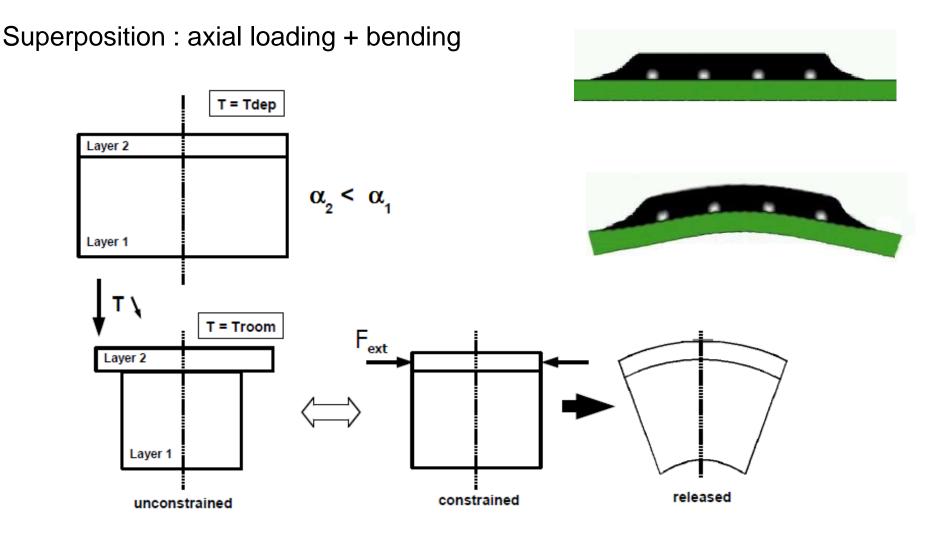
- -Die-level thermal stress thermal stress in TSV
- -Package-level thermal stress problem warpage
- -Chip-package interaction (CPI) sub-modeling technique
- -Board level thermal stress problems
 - Solder ball thermal cycling
 - Creep equations


Best practices


- -Initial stress free condition
- -Full model vs. global/local model
- -Volume averaging
- -Stress singularity

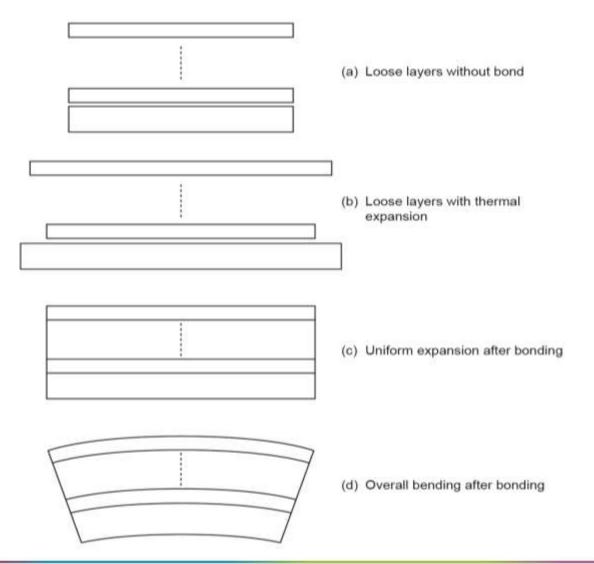
Stress, Strain, and Basic Elastic Material Properties


Coefficient of Thermal Expansion (CTE)



- Material dimensions change with temperature.
- The rate of dimensional change with temperature is called CTE.
- Primary driver of thermomechanical stress in electronic packages.

Material	α		
	(ppm/°C)		
Aluminum	23		
Stainless Steel	12		
Silicon	2.6		
Copper	17		
Underfill Epoxy	20, 70		
FR4 (in plane)	15, 10		
FR4 (z-axis)	65, 180		



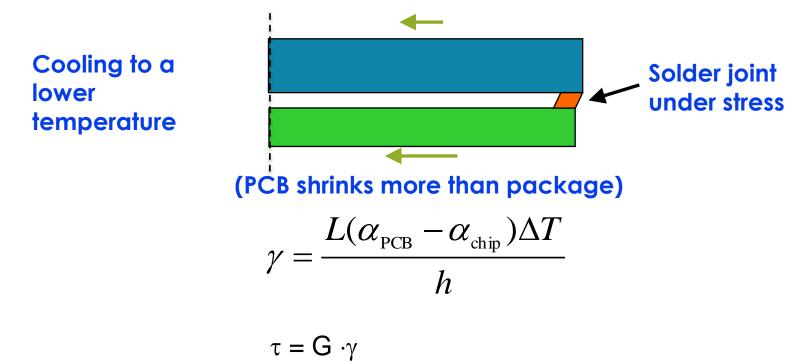
Increase internal energy (heat) causes atomic bond lengths to increase

Thermal-Mismatch – Multi-Layer Structure

Superposition : axial loading + bending

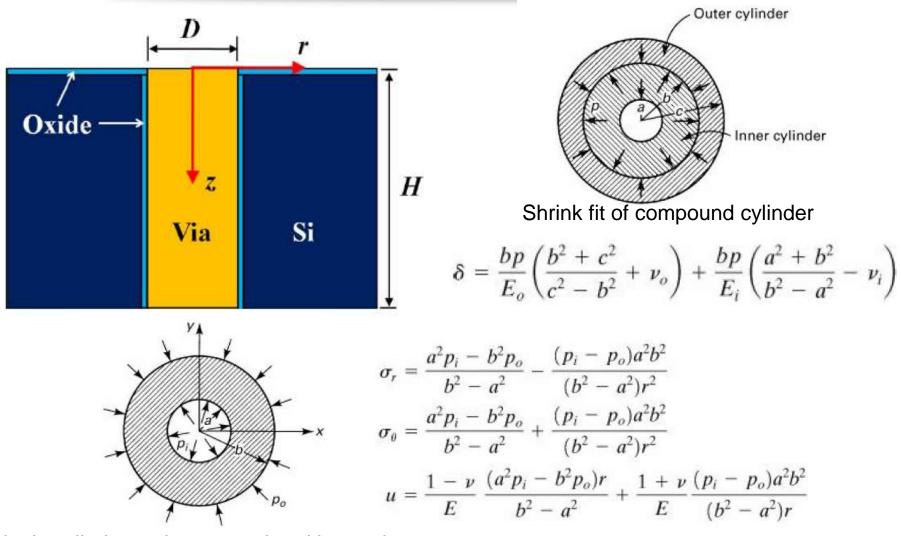
IEEE EPTC 2019 - Singapore

Thermal-Mismatch : Analytical Solution


$\sigma_{xi}(y) = (y - h_b) K + C, \text{ with } h_{i-1} \leq y \leq h_i$ $\sigma_{xi}(y) = \bar{Y}_i \left[(y - h_b) K + C + \nu_i A - \eta_i \varepsilon_i^0 \right], \text{ with } h_{i-1} \leq y \leq h_i \qquad \text{(stress in each layer)}$ $\sigma_{xi}(y) = \bar{Y}_{i} \left[(y - h_{b}) K + C + \nu_{i}A - \eta_{i}\varepsilon_{i}^{0} \right], \text{ with } h_{i-1} \leq y \leq h_{i} \quad \text{(stress}$ $h_{b} = \frac{\sum_{i=1}^{n} \bar{Y}_{i}D_{i}h_{mi}}{\sum_{i=1}^{n} \bar{Y}_{i}D_{i}} \quad h_{b} \text{ is the Bending Axis of the composite device;} \quad C \text{ is the Uniform Strain of the composite device;} \quad C \text{ is the Uniform Strain of the composite device;} \quad K \text{ is the Axial constant Strain of the composite device;} \quad W \quad K_{i} \text{ is the Curvature of the composite device;} \quad W \quad K_{i} \text{ is the Curvature of the composite device;} \quad W \quad K_{nat} \text{ is the Curvature of the composite device;} \quad W \quad K_{nat} \text{ is the Stress-free Strain of layer } i;$ $K = K_{nat} + K_{app} = \frac{\sum_{i=1}^{n} \bar{Y}_{i}D_{i}}{\sum_{i=1}^{n} \bar{Y}_{i}D_{i} \left[h_{mi} - h_{b}\right] \left(\eta_{i}\varepsilon_{i}^{0} - C - \nu_{i}A\right)}{\sum_{i=1}^{n} \bar{Y}_{i}D_{i} \left[h_{i}^{2} + \frac{D_{i}^{2}}{3} - h_{i}D_{i} + h_{b} \left(h_{b} - 2h_{mi}\right)\right]} + K_{app}$ $\varepsilon_{i}^{0} = \alpha_{i} \left(T_{room} - T_{depi}\right) + \varepsilon_{i}^{Btin}$ • C is the Uniform Strain of the composite device; (effective CTE) • A is the Axial constant Strain of the composite device; (warpage) • K_{nat} is the component due to Natural bending of the curvature of the composite device; • K_{app} is the Applied curvature of the composite device;

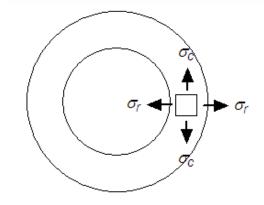
Ana Neves Vieira da Silva. Analytical Modeling of the Stress-Strain Distribution in a Multilayer Structure with Applied Bending. PhD Dissertation. Instituto Superior Tecnico of Universidade Tecnica de Lisboa, Portugal.

Multi-layer structure


Thermal Mismatch - Shear Stress and Strain on Solder Joint

A simplified and approximate solution

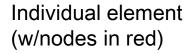
- τ : shear stress in solder
- γ : solder ball shear strain
- G: elastic shear modulus
- L: distance of netural point (half-die size, diagnoal)
- h: solder ball stand-off
- α : CTE

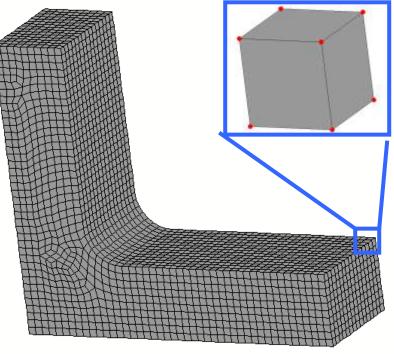

Thermal Mismatch – TSV Structure

Single cylinder under external and internal pressure

Advanced Mechanics of Materials and Applied Elasticity, 5th Edition, by Saul K. Fenster, Ansel C. Ugural.

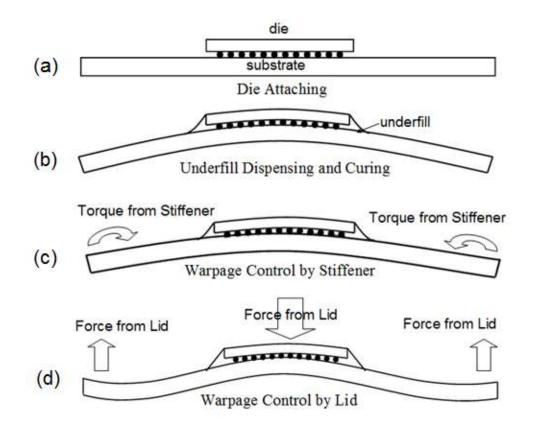
Thermal Stress due to Temperature Gradient

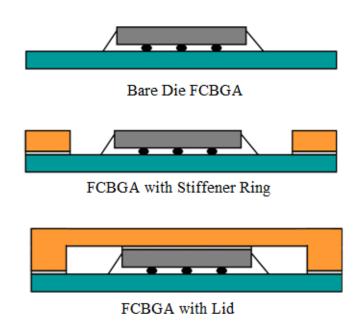

$$\sigma_r = \alpha E \left[-\frac{1}{r^2} \int_a^r Tr \, dr + \frac{r^2 - a^2}{r^2 (b^2 - a^2)} \int_a^b Tr \, dr \right]$$
$$\sigma_\theta = \alpha E \left[-T + \frac{1}{r^2} \int_a^r Tr \, dr + \frac{r^2 + a^2}{r^2 (b^2 - a^2)} \int_a^b Tr \, dr \right]$$

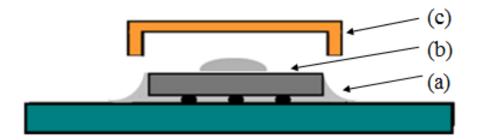

$$\sigma_r = \alpha E \left[\frac{1}{b^2} \int_0^b Tr \, dr - \frac{1}{r^2} \int_0^r Tr \, dr \right]$$
$$\sigma_\theta = \alpha E \left[-T + \frac{1}{b^2} \int_0^b Tr \, dr + \frac{1}{r^2} \int_0^r Tr \, dr \right]$$

Advanced Mechanics of Materials and Applied Elasticity, 5th Edition, by Saul K. Fenster, Ansel C. Ugural.

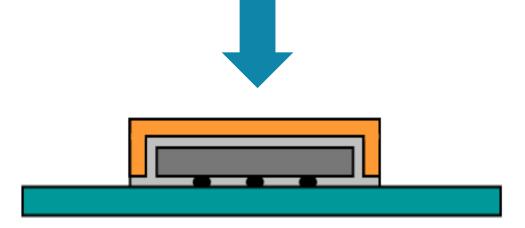
Finite Element Analysis (FEA)


- Analytical solutions are usually not applicable to complex problems.
- Based on dividing the problem into discrete elements for which analytical solutions exit.
- Analytical equations are then formed into a matrix and solved simultaneously.
- Method may require multiple iterations to converge and may have to divide "time" steps to reach a solution.
- Used for structural, thermal, EMI, fluid dynamics, diffusion, stock analysis, etc.

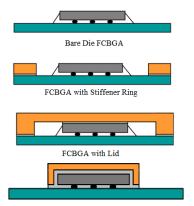


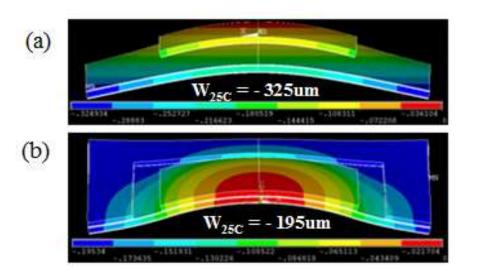

Bracket meshed into 11,295 elements.

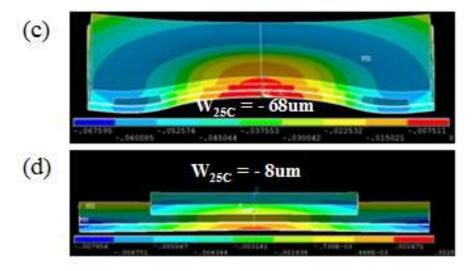
Application – Warpage Analysis

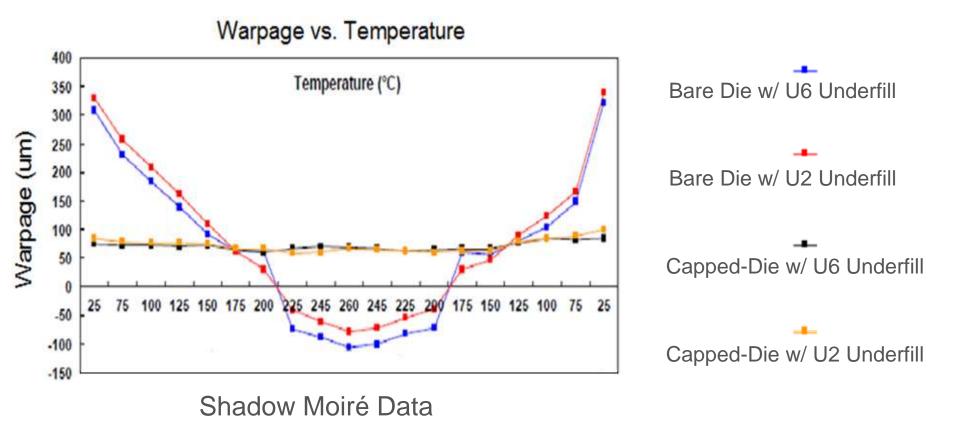


Application – Warpage Control

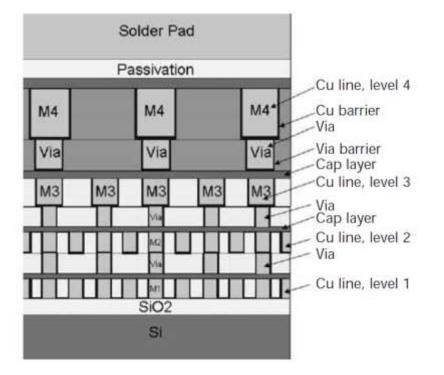

Capped-Die Flip Chip Package Design - assembly process

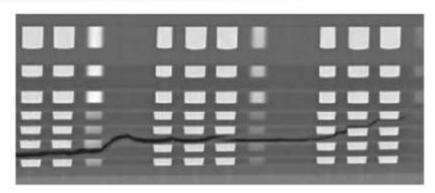

Using an underfill-like encapsulant, a metallic cap is attached to the die.

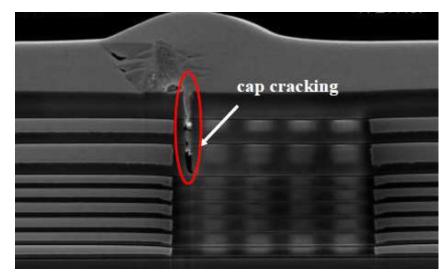



Comparison for Warpage Control Methods by FEA

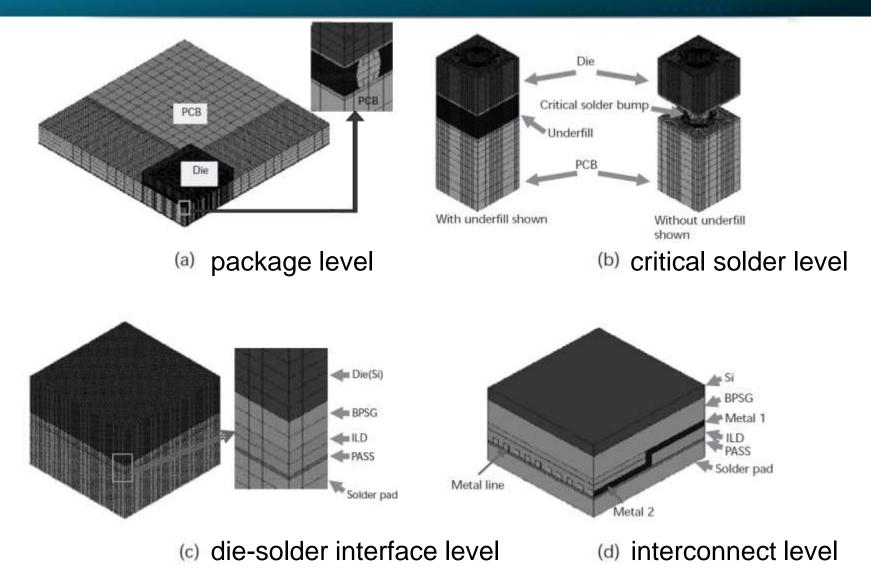
- a) Bare die on substrate
- b) Package with stiffener
- c) Package with lid
- d) Capped-die package



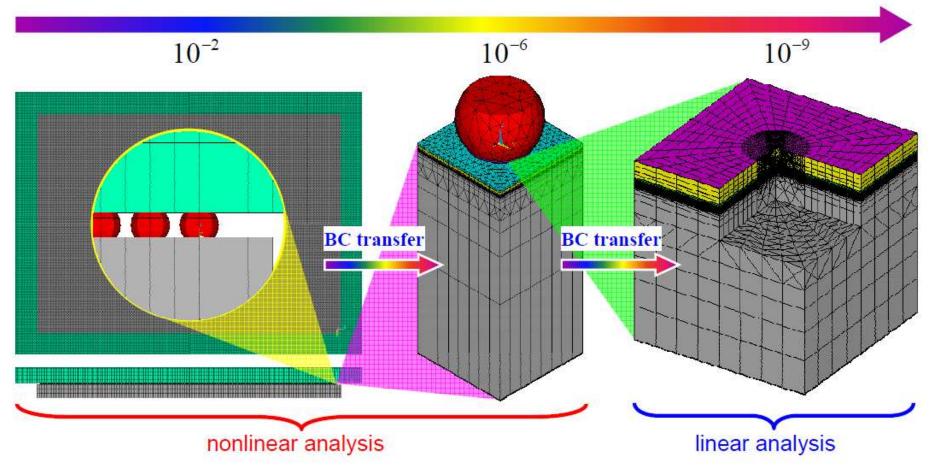




Shen Y, Zhang L. Zhu WH, Zhou J, Fan XJ. Finite-element analysis and experimental test for a capped-die flip-chip package design, *IEEE Transactions on Components, Packaging and Manufacturing Technology.* 6(9), 1308 – 1316. 2016.


Chip-Package Interaction (CPI)

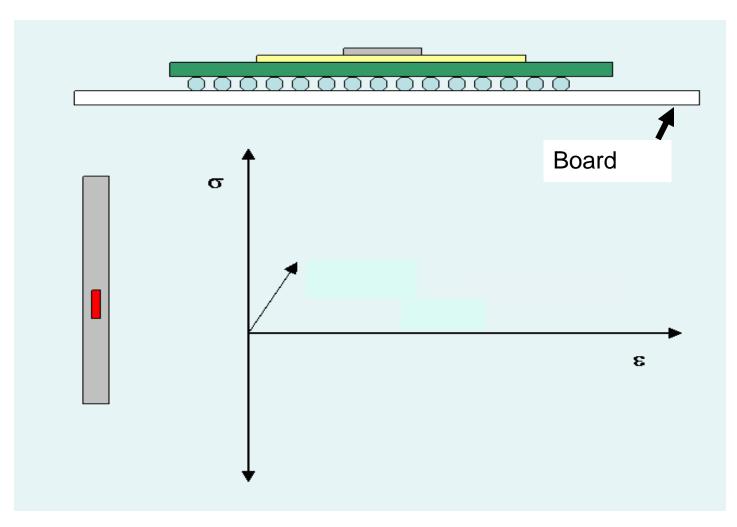
Multilevel Sub-modeling Technique



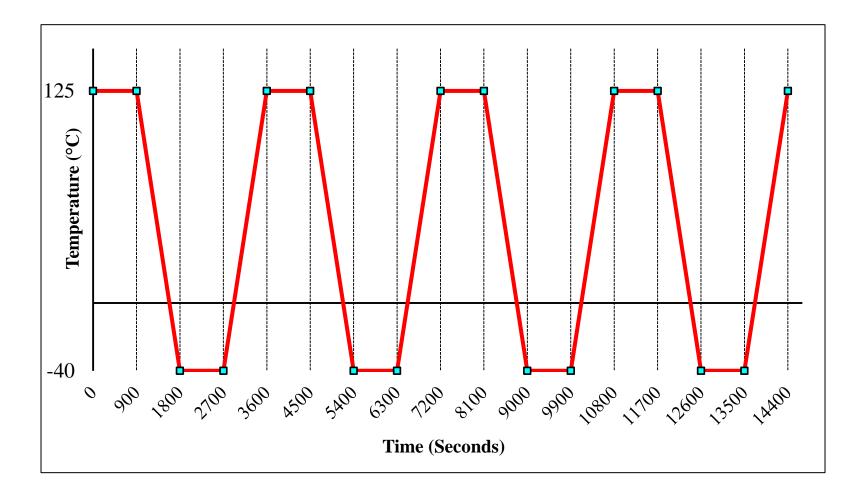
Xuefeng Zhang, Se Hyuk Im, Rui Huang, and Paul S. Ho, Chip-Package Interaction and Reliability Impact on Cu/Low-k Interconnects, Chapter 2, UT Austin 2008/

IEEE EPTC 2019 - Singapore

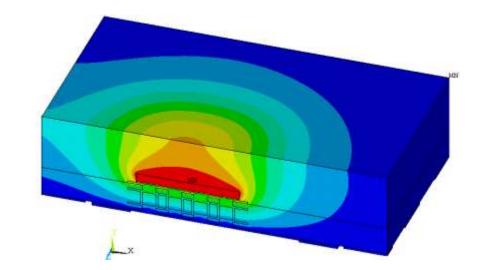
Xuejun Fan and Ricky Lee


Multilevel Sub-modeling Technique

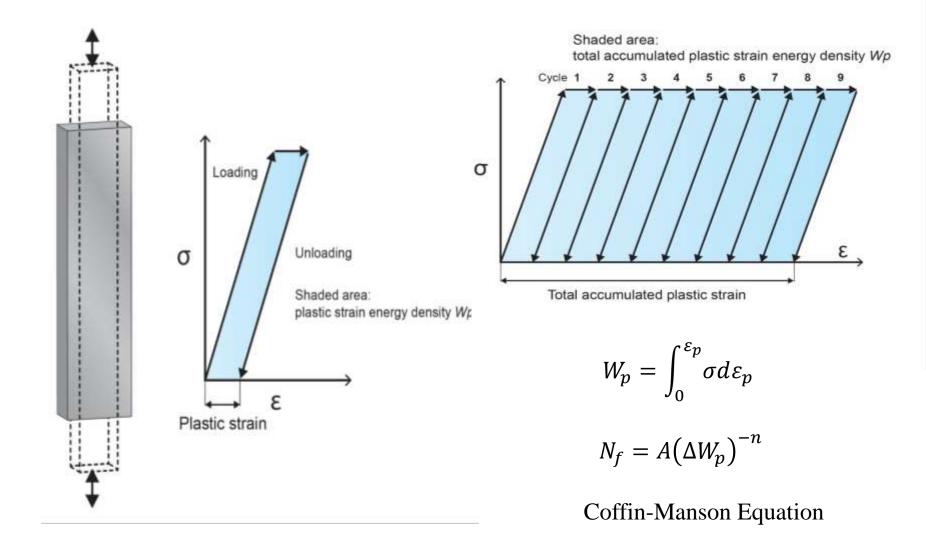
Multilevel models are chained to obtain the driving force for delamination.
 Thousands of lines in ANSYS APDL codes have been written for the model.
 Typical model has one million DOF and takes a few hours to solve.


XH Liu, TM Shaw, G Bonilla - Advanced Metallization Conference, 2010 - sematech.org

Temperature Cycling


Temperature Cycling

• Temperature cycling – uniform temperature condition assumed


Power Cycling

- Temperature gradient exists.
- Much less severe than temperature cycling.

Fatigue Life Estimate

Solder Creep Equations (ANAND Model)

Anand's model (rate-dependent visco-plastic model)

$$\frac{d\varepsilon_p}{dt} = A \left[\sinh\left(\frac{\xi\sigma}{s}\right) \right]^{-\frac{1}{m}} \exp\left(-\frac{Q}{RT}\right)$$

$$\frac{ds}{dt} = \left\{ h_0(|B|)^{\alpha} \frac{B}{|B|} \right\} \frac{d\varepsilon_p}{dt}$$

$$B=1-\frac{s}{s^*}$$

$$s^* = \hat{s} \left[\frac{d\varepsilon_p/dt}{A} \exp\left(-\frac{Q}{RT}\right) \right]^n$$

Variable/Para	Meaning	Units
meter		
S ₀	initial value of deformation resistance	Stress
Q/R	Q = activation energy	Energy/volume
	R = universal gas constant	Energy/(volume temp)
A	pre-exponential factor	1/time
ξ	multiplier of stress	Dimensionless
m	strain rate sensitivity of stress	Dimensionless
h_0	hardening / softening constant	Stress
Ŝ	coefficient for deformation resistance	Stress
	saturation value	
n	strain rate sensitivity of saturation	Dimensionless
	(deformation resistance) value	
α	strain rate sensitivity of hardening or	Dimensionless
	softening	

Anand Constants for Various Solder Alloys

Parameter	SAC105	SAC305	SAC387	SAC405	SnPb	SnPbAg	SnAg
<i>s</i> ₀	2.3479	18.07	3.2992	20	12	12.41	39.09
Q/R	8076	9096	9883	10561	9200	9400	8900
A	3.773	3484	15.773	325	4.2E6	4E6	2.23E4
ξ	0.9951	4	1.0673	10	1.5	1.5	6
m	0.4454	0.2	0.3686	0.32	0.3	0.303	0.182
h_0	4507.5	144000	1076.9	8E5	1.4E3	1379	3321.15
Ŝ	3.5833	26.4	3.1505	42.1	14	13.79	73.81
n	0.012	0.01	0.0352	0.02	0.071	0.07	0.018
α	2.1669	1.9	1.6832	2.57	1.31	1.3	1.82

SAC105 D. Bhate et al., *Constitutive Behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu Alloys at Creep and Low Strain Rate Regimes*, IEEE Transactions on Components and Packaging Technologies, Vol. 31, No. 3, September 2008, p. 622.

SAC305 Motalab et al., Determination of Anand Constants for SAC Solders using Stress-Strain or Creep Data, ITherm 2012, pp. 909-921.

SAC387 D. Bhate et al., *Constitutive Behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu Alloys at Creep and Low Strain Rate Regimes*, IEEE Transactions on Components and Packaging Technologies, Vol. 31, No. 3, September 2008, p. 622.

SAC405 W. Qiang et al., *Experimental determination and modification of Anand model constants for Pb-free material 95.5Sn4.0Ag0.5Cu*, in EUROSIME Conf. IEEE, 2007.

SnPb R. Darveaux, "Effect of simulation methodology on solder joint crack growth correlation," in Electronic Components & Technology Conf. IEEE, 2000.

SnPbAg R. Darveaux, "Effect of simulation methodology on solder joint crack growth correlation," in Electronic Components & Technology Conf. IEEE, 2000.

SnAg Wang, Z. Cheng, K. Becker, and J. Wilde, *Applying Anand model to represent the viscoplastic deformation behavior of solder alloys*, ASME Journal of Electronic Packaging, Vol. 123, 2001.

Solder Creep Equations

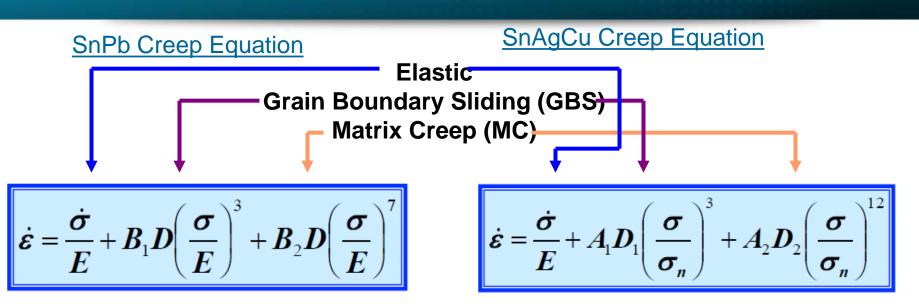
Solder alloys	C ₁ (1/sec)	C ₂ (1/Pa)	C ₃	C ₄ (°K)
95.5Sn-3.9Ag-0.6Cu	441000	5x10 ⁻⁹	4.2	5412
63Sn-37Pb	926(508 - T)/T	1/(37.78x106 - 74414T)	3.3	6360

$$\frac{\partial \varepsilon}{\partial t} = C_1 \left[\sinh(C_2 \sigma) \right]^{C_3} \exp\left(\frac{-C_4}{T}\right)$$

C_1 , C_2 , C_3 , C_4 are the input constants for ANSYS finite element program. The stress unit is Pa.

Lau, Dauksher, and Vianco, "Acceleration Models, Constitutive Equations, and Reliability of Lead-Free Solders And Joints", *IEEE Electronic Components and Technology Conference*, June 2003, pp. 229-234.

Solder Creep Equations (NEW)


Solder alloys	C ₁ (1/sec)	C ₂ (1/Pa)	C ₃	C ₄ (°K)	
95.5Sn-3.9Ag-0.6Cu	441000	5x10 ⁻⁹	4.2	5412	Sandia
Sn(3.5-3.9)Ag(.58)Cu	500000	10x10 ⁻⁹	5.0	5807	Agilen
Fraunhofer's LF	277984	24.47x10 ⁻⁹	6.41	6504	IZM

$$\frac{\partial \varepsilon}{\partial t} = C_1 \left[\sinh(C_2 \sigma) \right]^{C_3} \exp\left(\frac{-C_4}{T}\right)$$

C_1 , C_2 , C_3 , C_4 are the input constants for ANSYS finite element program. The stress unit is Pa.

Lau, J., and W. Dauksher, "Creep Constitutive Equations of Sn(3.5-3.9)wt%Ag(0.5-0.8)wt%Cu Lead-Free Solder Alloys", in *Micromaterials and Nanomaterials*, edited by B. Michel, IZM, Berlin, Germany, 2004, pp. 54-62.

Solder Creep Equations

where

$$\dot{\varepsilon}$$
 = Total Strain Rate (1/sec)

 $\sigma =$ Stress (MPa)

$$E = M$$
 odulus of Elasticity (MPa) = (56000 - 88T)

T = Temperature(K)

$$B_1 = 1.70 \times 10^{12} \, 1/\mathrm{sec}$$

 $B_2 = 8.90 \times 10^{24} \, 1/\,\mathrm{sec}$

$$D = \exp\left(\frac{-5413}{T}\right)$$

where

 $\dot{\mathcal{E}}$ = Total Strain Rate (1/sec)

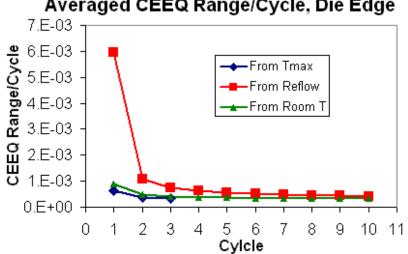
 $\sigma =$ Stress (*MPa*)

E = M odulus of Elasticity (MPa) = (59533 - 66.667T)

$$T = \text{Temperature (K)}$$

$$A_1 = 4.0 \times 10^{-7} \text{ 1/sec}$$

$$A_2 = 1.0 \times 10^{-12} \text{ 1/sec}$$

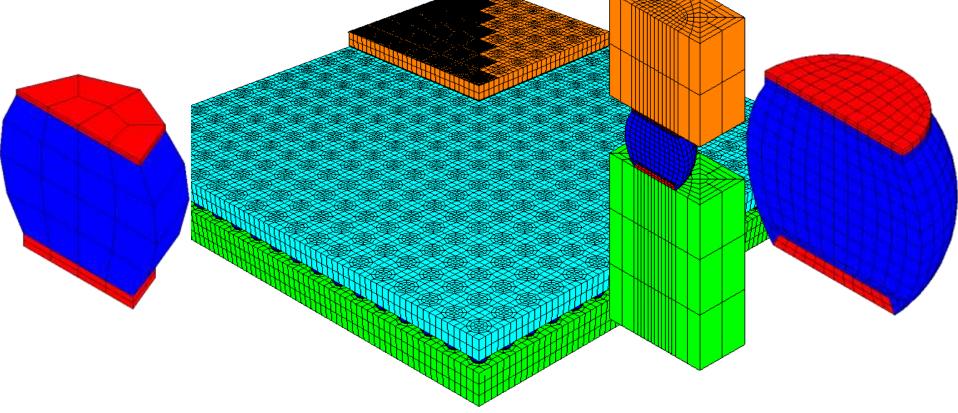

$$D_1 = \exp(-3223/T)$$

$$D_2 = \exp(-7348/T)$$

$$\sigma_n = 1 \text{ MPa}$$

Best Practice (1) - Stress-Free Setting

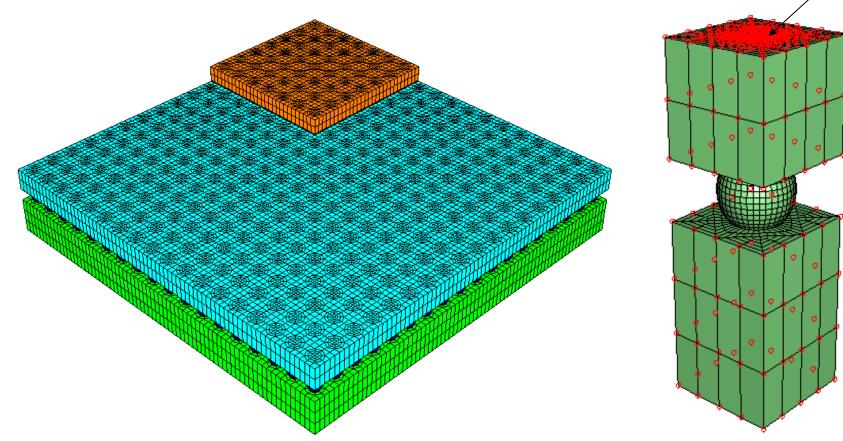
- Three most commonly used initial stress-free temperatures
 - The solidus temperature of solder material (e.g., for SnAgCu, this temperature is 217°C)
 - The room temperature as initial stress-free (e.g. 25°C)
 - The high dwell temperature of thermal cycle or operating conditions (denoted as T_{max} , e.g. =125°C for thermal cycling from -25°C to 125°C)

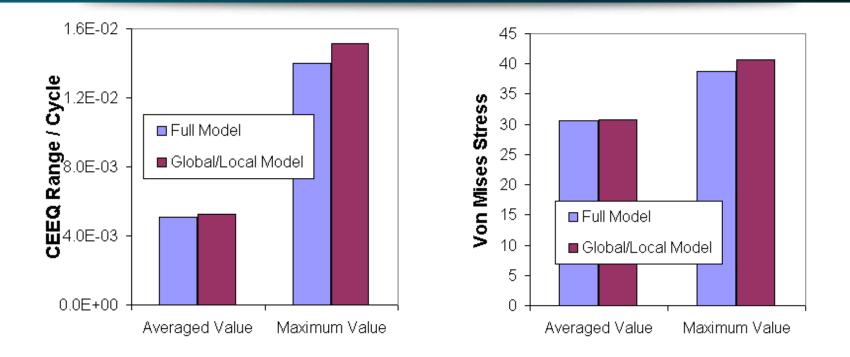

Averaged CEEQ Range/Cycle, Die Edge

T_{max} as stress-free condition is recommended.

Fan XJ, Pei M, Bhatti PK. Effect of finite element modeling techniques on solder joint fatigue life prediction of flip-chip BGA packages. Proc. of Electronic Components and Technology Conference (ECTC), 972-980. 2006.

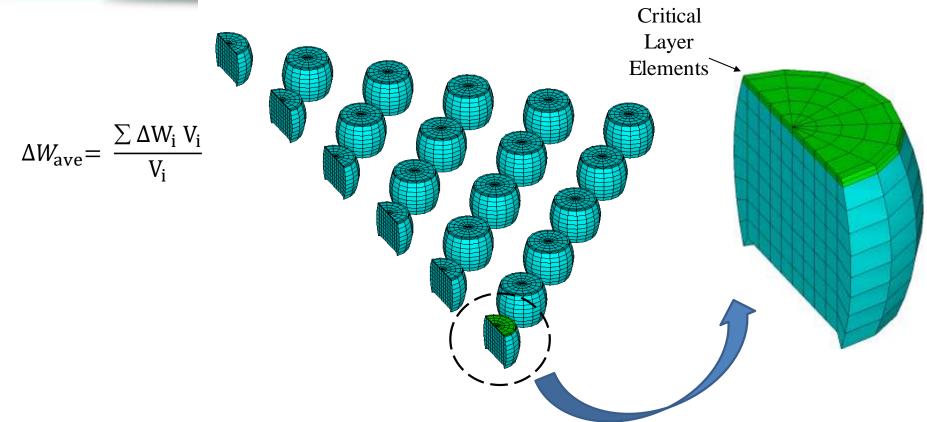
IEEE EPTC 2019 – Singapore


Best Practice (2) – One Global Model (Full Model)


- Coarse element at most of the places
- Refined element at critical solder joints
- No tie element is used
- Refined solder balls consider both SMD and MD pads

Best Practice (2) – Sub-modeling (Global/Local)

Substrate/underfill interface



Comparison - Global/Local Model and Full Model

- The global/local modeling approach provides satisfactory results for the volumetrically averaged and maximum values
- For some location, the difference in maximum value can be as high as 20% (not shown here)
- "Full Model" is recommended.

Best Practice (3) - Volume Averaging

- ΔW_{ave} = average inelastic strain energy density accumulated per cycle for fixed thickness layer elements
- ΔW_i = strain energy density accumulated per cycle for each element i
- V_i = volume of each element i

Volume averaging over a fixed thickness of thin layer is recommended.

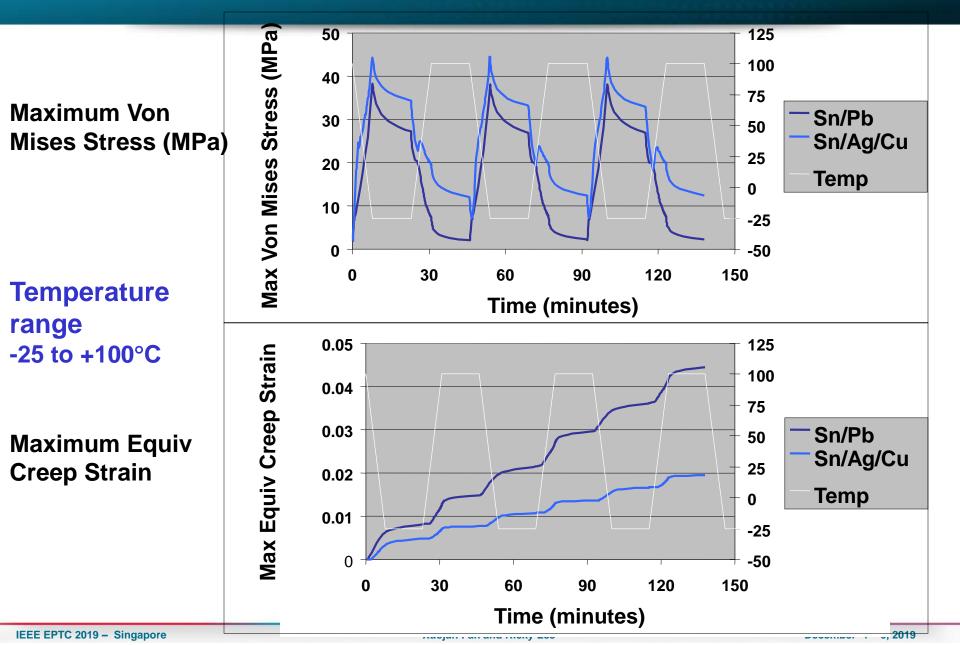
Best Practice (4) - Worst Case Solder Joint Location

-For FC-BGA package

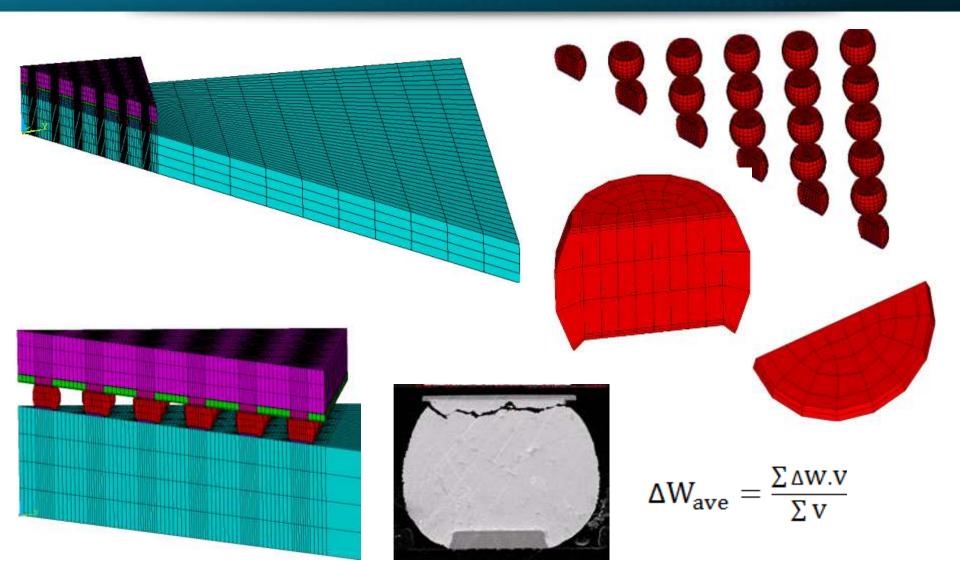
 It's commonly accepted that the worst case solder joint is located in the outermost along diagonal direction under the die shadow.

-Metrics

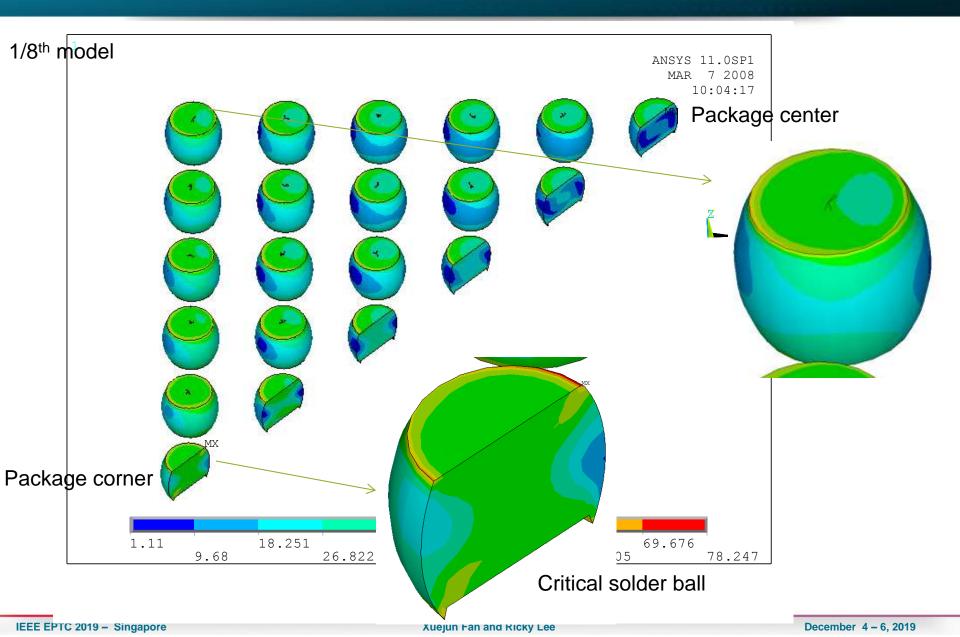
- Von Mises stress, creep strain, creep strain energy density, peel stress
- Maximum value, averaged value

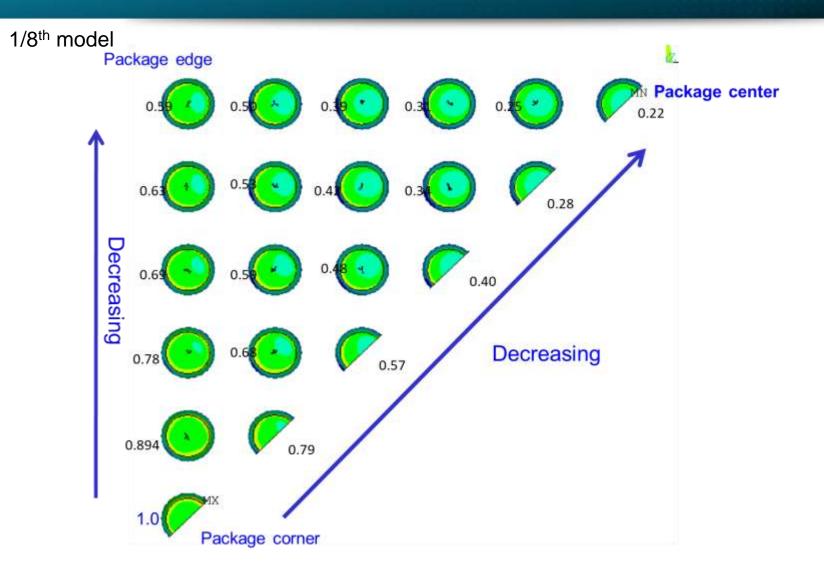

Results

- Averaged per-cycle creep strain and stress shows the worst-case solder joint at the middle of die edge
- The maximum value of these two parameters show the worst joint at the die corner
- Peel stress finds the maximum tensile stress at the joint one row inside from the die shadow corner
- Experimental data
 - The solder joint one row inside from the corner of die shadow usually has the highest crack growth rate
 - All solder joints along the die edge have comparable crack growth rates

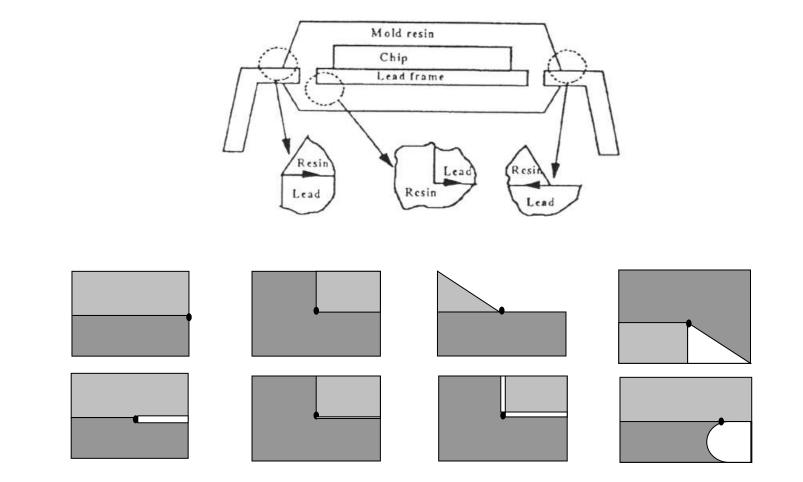

Correlation with experimental data is recommended.

Bhatti PK, Pei M, Fan XJ. Reliability analysis of SnPb and SnAgCu solder joints in FC-BGA packages with thermal enabling preload. Proc. of Electronic Components and Technology Conference (ECTC), 601-606. 2006.


General Results: SnPb vs. SnAgCu


Wafer Level Package (Fan-in WLP) – Worst Location

WLP - von Mises Stress Map in Solder Balls



WLP - Plastic Work Density Map

Fan XJ, Varia B, Han Q. Design and optimization of thermo-mechanical reliability in wafer level packaging, Microelectronics Reliability, 50, 536-546, 2010.

Stress Singularities in Material Joints

Fan XJ, Wang HB, Lim TB. Investigation of the underfill delamination and cracking for flip chip modules under temperature cyclic loading. *IEEE Transactions on Components, Manufacturing and Packaging Technologies*, 24(1), 84-91. 2001.

IEEE EPTC 2019 - Singapore

- Thermal mismatch vs. temperature gradient
- Analytical solution
 - -Layered structure (stress, warpage, effective CTE)
 - -Cylindrical structure (TSV)
- Die-level thermal stress thermal stress in TSV
- Package-level thermal stress problem warpage
- Chip-package interaction (CPI) submodeling technique
- Board level thermal stress problem
 - -Solder ball thermal cycling (Flip chip BGA, WLP)
 - -Creep equations
 - -Best method for practice
 - Initial stress free condition; full model vs. global/local model; worst solder ball location, volume averaging
- Stress singularity of joint materials

Introduction

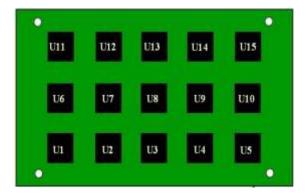
- Temperature Loading
- Mechanical Loading
- Moisture Loading
- Electrical Current Loading Multi-Physics Modeling

Summary

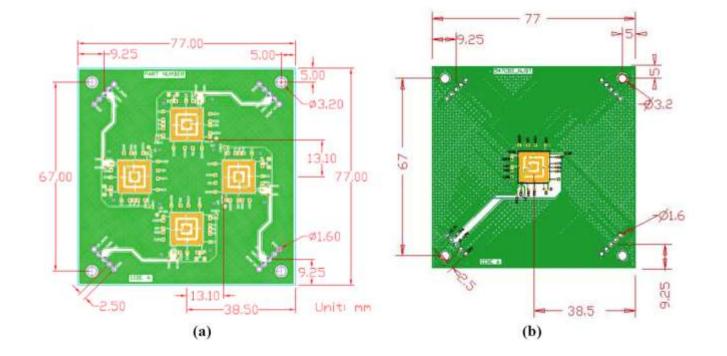
JEDEC drop test standard (old and new)

Simulation method

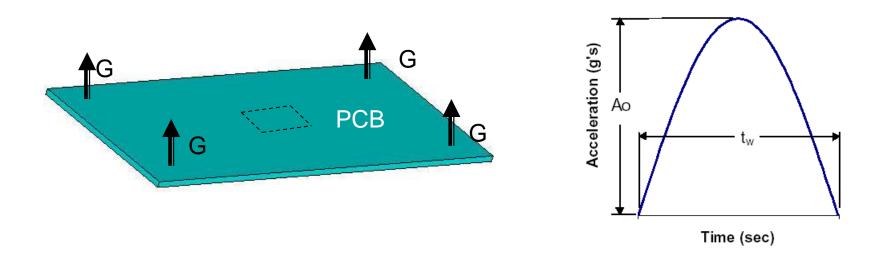
- -Input G
- -Large mass
- -Input D
- -Direct acceleration
- -Global/local method


4-point bending test

JEDEC Drop Test Set-Up

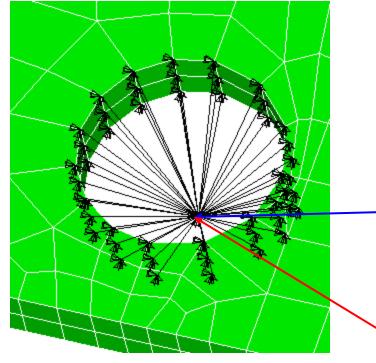

- Peak acceleration: 1500g
- Impulse time: 0.5ms with half-sine shape

JEDEC Test Standard JESD22-B111 (Old)

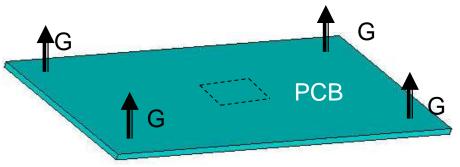


Group	Number Components	Component Location		
А	4	U1, U5, U11, & U15		
В	4	U2, U4, U12, & U14		
С	2	U6 & U10		
D	2	U7 & U9		
Е	2	U3 & U13		
F	1	U8		

JEDEC Test Standard JESD22-B111A (New, 11/2016)

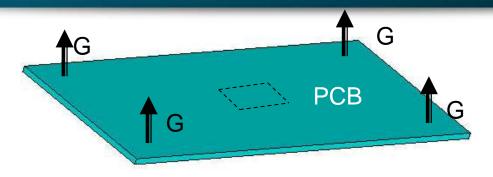


FEA Modeling: Input-G Method



$$\begin{split} \{M\}[\ddot{u}_1] &= \{C\}[\dot{u}_1] + \{K\}[u_1] = 0 \\ \text{with initial conditions} \\ [u_1]|_{t=0} &= 0, \qquad [\dot{u}_1]|_{t=0} = \sqrt{2gH} \\ \text{and boundary condition} \\ a &= \begin{cases} 1500g \ \sin \frac{\pi t}{t_w} & \text{for } t \leq t_w, \quad t_w = 0.5 \\ 0 & \text{for } t \geq t_w \end{cases} \end{split}$$

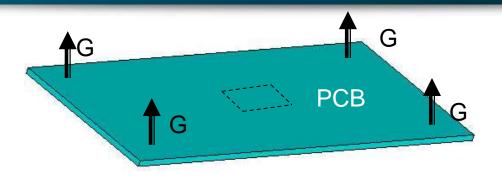
FEA Modeling: Input-G Method


Large Mass Method

Large mass 10⁸ times mass of structure coupled (1mm away from PCB bottom)

Acceleration = $1500 \times g \times sin (pi \times t/0.5)$ Force = $10^8 \times Acceleration$

FEA Modeling: Input-D Method

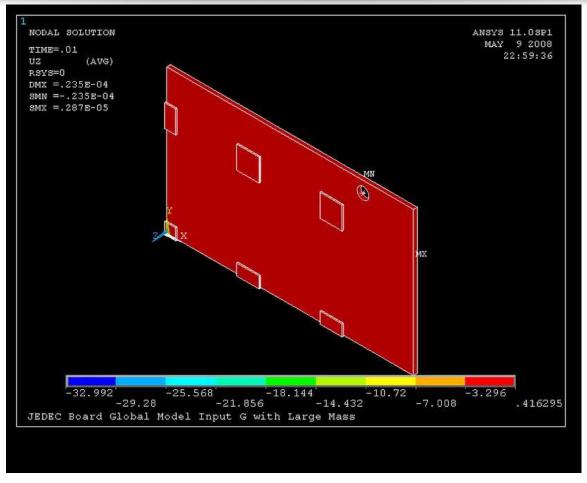


 $\{M\}[\ddot{u}_1] = \{C\}[\dot{u}_1] + \{K\}[u_1] = 0$ with initial conditions

 $[u_1]|_{t=0} = 0,$ $[\dot{u}_1]|_{t=0} = \sqrt{2gH}$ and boundary condition

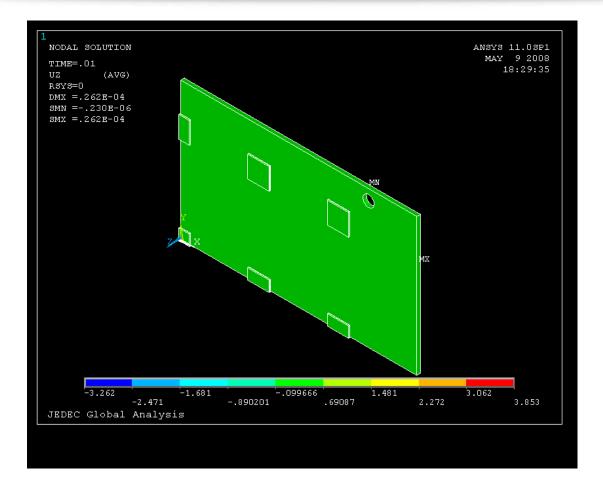
$$\begin{split} & [u_1]|_{\text{at hole}} = \\ & \left\{ -\left(\frac{t_w}{\pi}\right)^2 (1500\text{g}) \sin\frac{\pi t}{t_w} + \left(\frac{t_w}{\pi} (1500\text{g}) + \sqrt{2\text{gH}}\right) \text{t, t} \le t_w \right\} \\ & \left\{ \left(2\frac{t_w}{\pi} (1500\text{g}) + \sqrt{2\text{gH}}\right) \text{t} - \left(\frac{t_w}{\pi}\right)^2 (1500\text{g}) \qquad \text{, t} \ge t_w \right\} \end{split}$$

FEA Modeling: Direct Acceleration Method

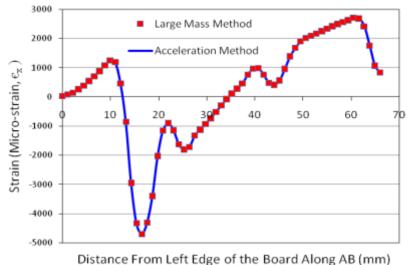

$$\{M\}[\ddot{u}_{2}] + \{C\}[\dot{u}_{2}] + \{K\}[u_{2}] = \begin{cases} -\{M\}1500g \sin \frac{\pi t}{t_{w}} & t \le t_{w}, t_{w} = 0.5 \\ 0 & t \ge t_{w} \end{cases}$$
with initial conditions

 $[u_1]|_{t=0} = 0,$ $[\dot{u}_1]|_{t=0} = \sqrt{2gH}$

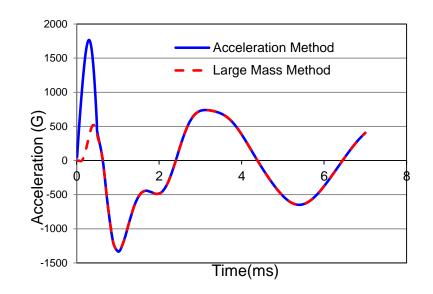
and boundary conditions $[u_2]|_{at hole} = 0$


Fan XJ, Ranouta AS, Dhiman HS. Effects of package level structure and material properties on solder joint reliability under impact loading. *IEEE Transactions on Components, Packaging and Manufacturing Technology*. 3(1), 52-60. 2013.

Input-G Method – Board Vibration

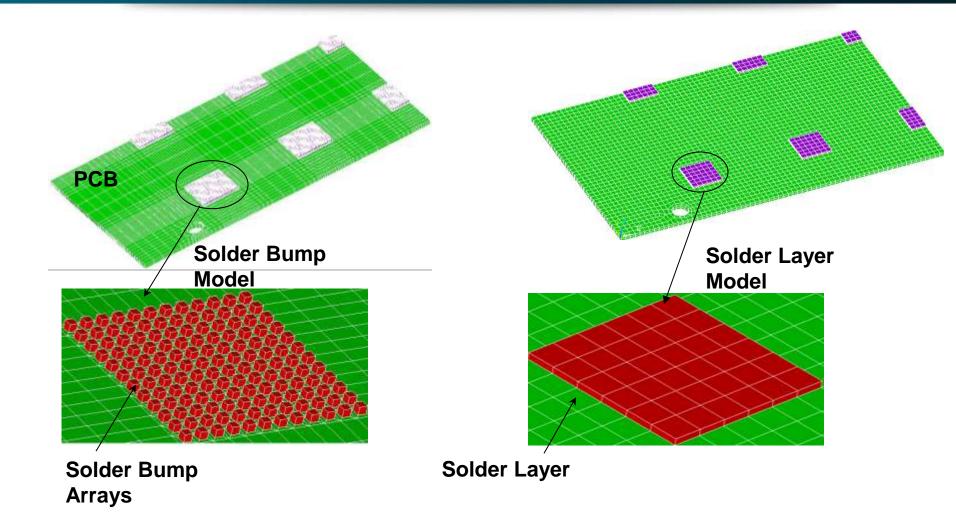

• Since acceleration impulse is given on the screw locations, the displacements are not fixed and the board is moving in one direction.

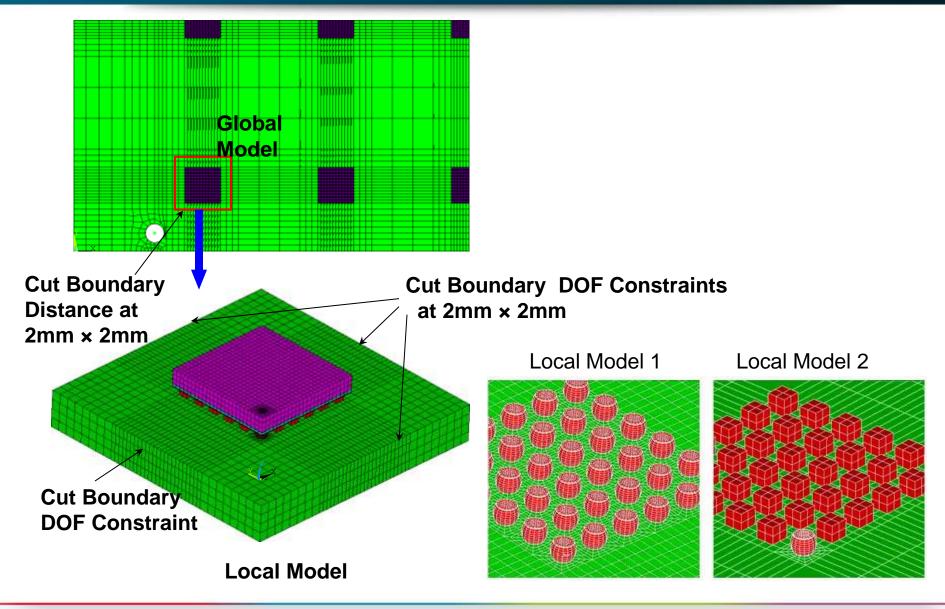
Direct Acceleration Method – Board Vibration


• Since the displacement is fixed at the screw locations, the board is vibrating as expected.

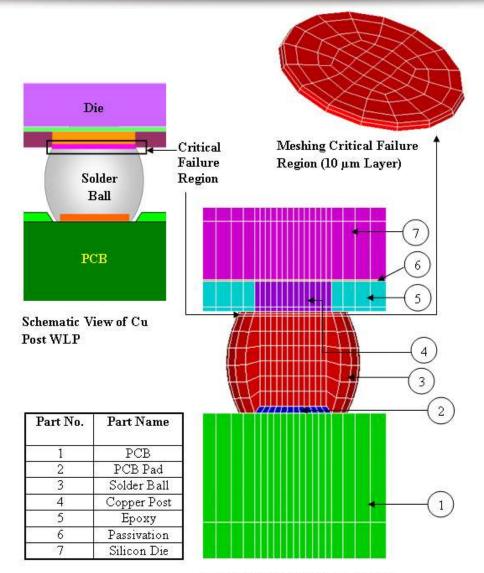
Input-G vs. Direct Acceleration Method

bistance from zert zuge of the board stong sto (min)

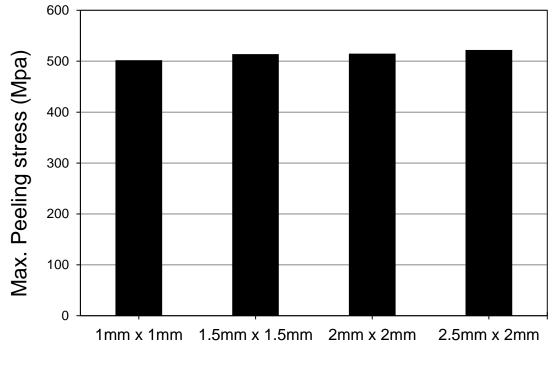

Distribution of Board Strain in x direction along line AB at t = 1.5 ms


Comparison of acceleration time history

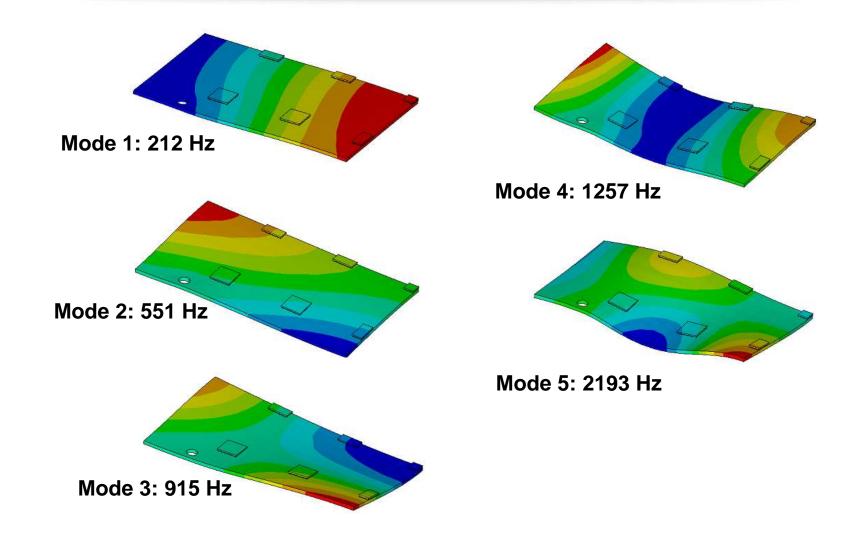
 Direct Acceleration method is recommended, but all methods provide identical results.


FEA Global Model

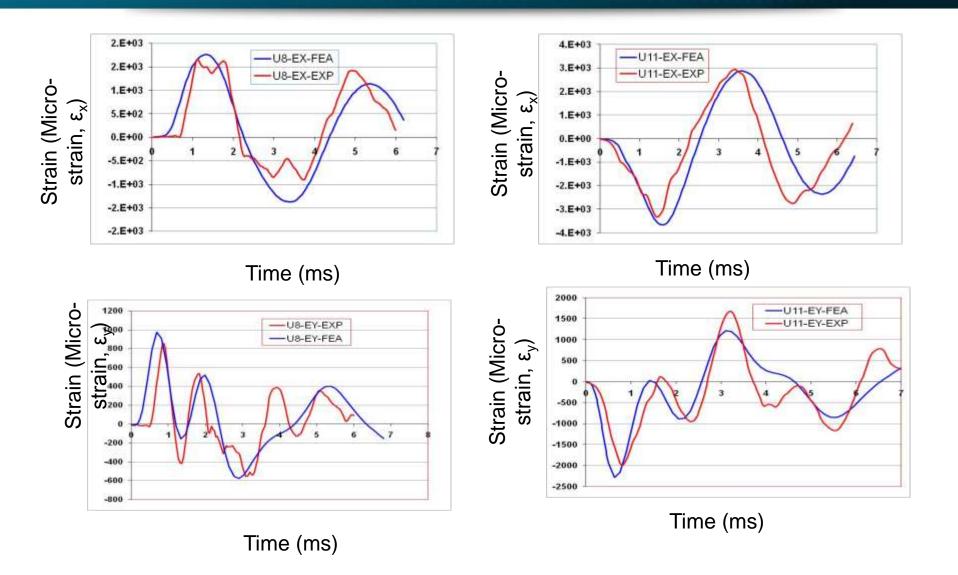
FEA Local Model



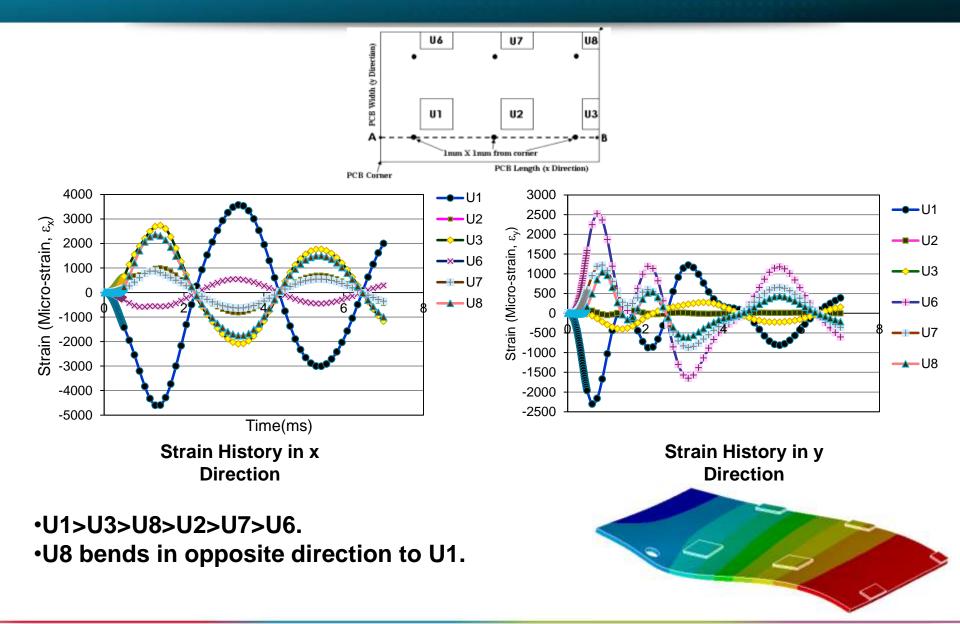
FEA Local Model – Solder Joint

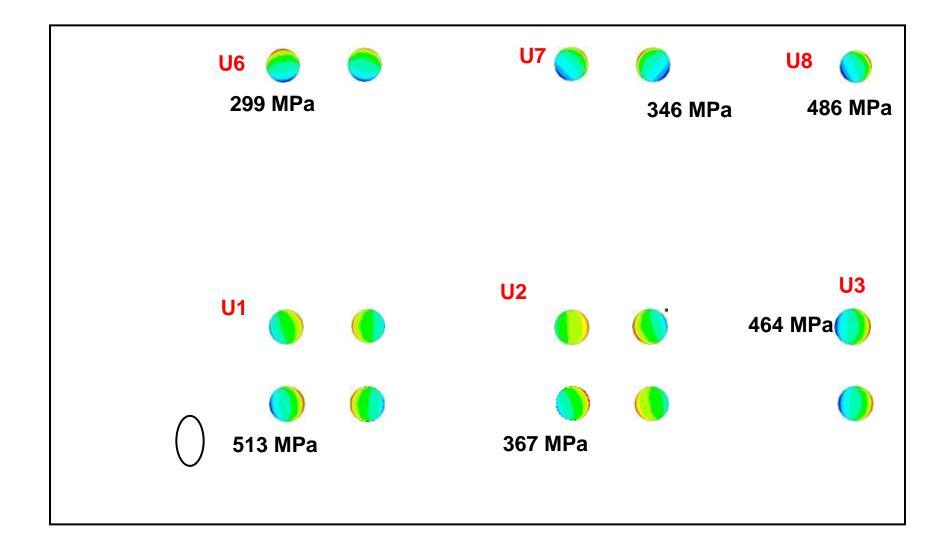

FE Model of Detailed Solder Ball

Effect of Cut Boundaries in Sub-modeling

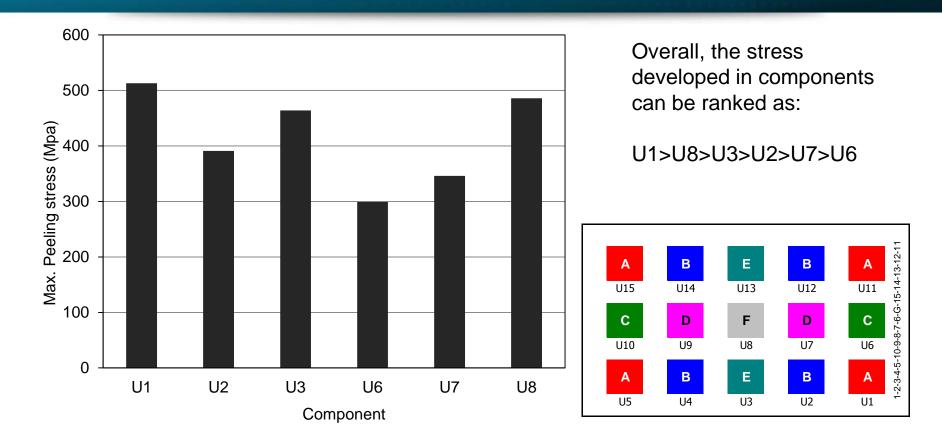


Cut Boundary Distance(mm)

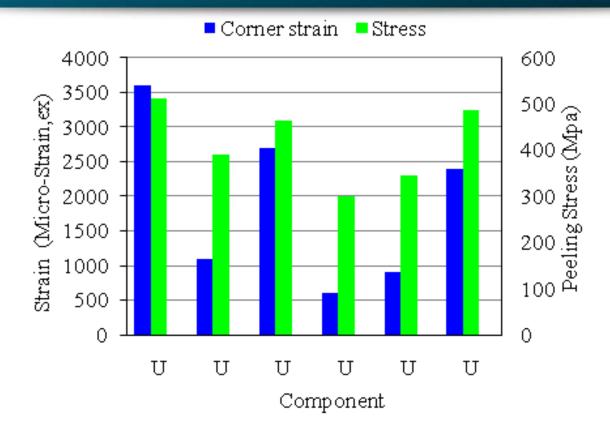

Global Model Results – Frequency and Mode Shape



Experimental Validation



Board Strain Analysis: Package Corner Strain(ε_x)

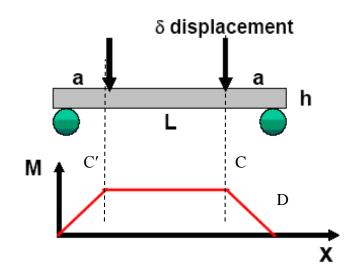

Maximum Peel Stress

Failure rank:

• Group A (U1, U5, U11 and U15)> Group F (U8) > Group E (U3, U13).

Correlation of Solder Joint Stress and Board Strain

Board Strain Ranking: U1>U3>U8>U2>U7>U6

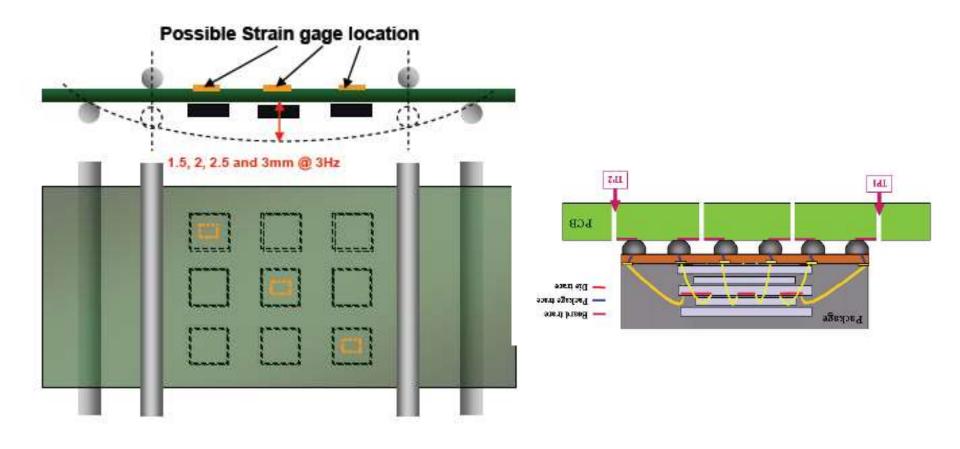

Solder Joint Stress Ranking:U1>U8>U3>U2>U7>U6

• Exact correlation does not exist for strain and stress values.

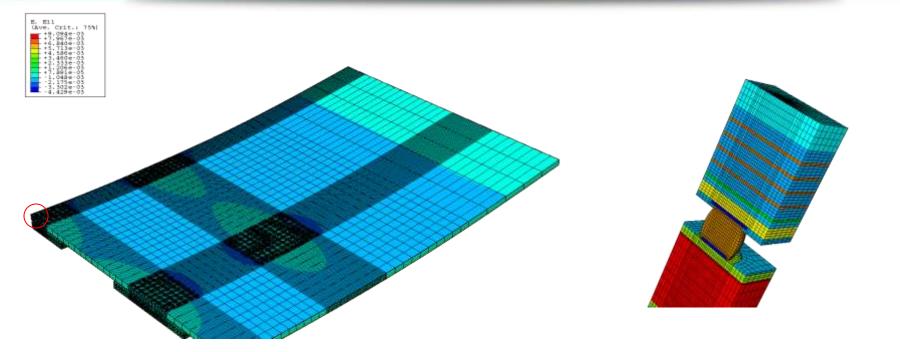
Fan XJ, Ranouta AS. Finite element modeling of system design and testing conditions for component solder ball reliability under impact. *IEEE Transactions on Components, Packaging and Manufacturing Technology*. 2(11), 1802-1810, 2012.

IEEE EPTC 2019 – Singapore

4-Point Bending Test


Segment CC'

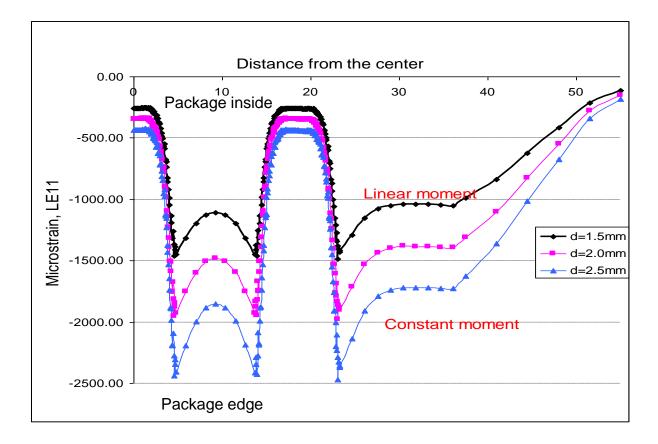
$$\varepsilon_x = \frac{3h\delta}{a(3L - 4a)}$$


$$\varepsilon_x = \frac{12h\delta}{L^3}x$$

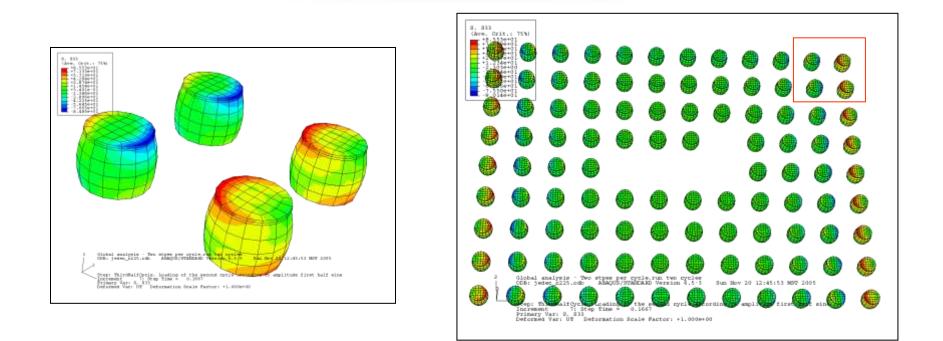
4-Point Bending Test

- 4PT bending test to take advantage of uniform strain BC for each component.
- JEDEC board + 9 components with electric monitoring for each one of them.
- Cyclic testing of freq 3Hz @ 1.5mm, 2mm and 2.5mm deflections to DC failure.

Cyclic Bending: Modeling Methodology



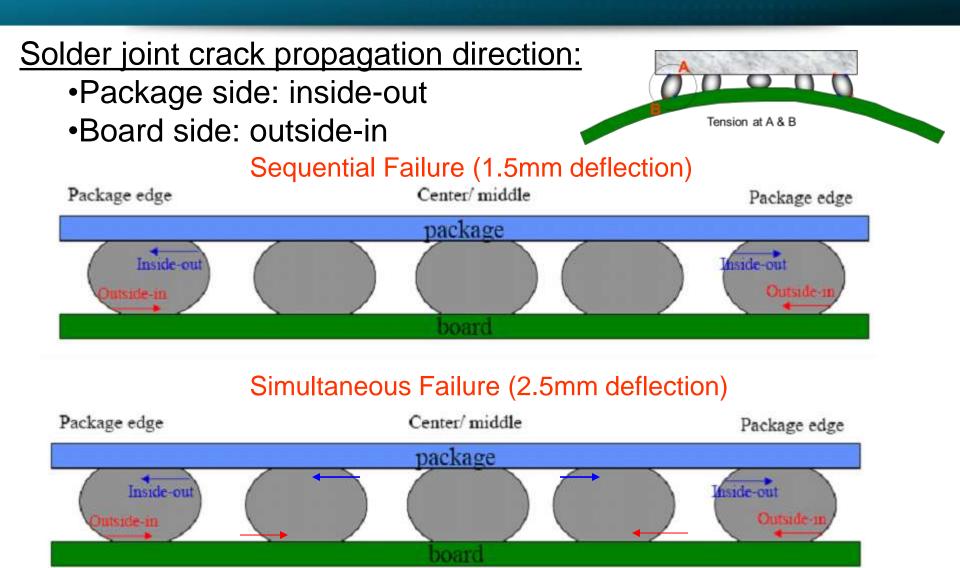
Global/local modeling methodology


- Elastic global model.
- Local models use EPP SAC405 solder material properties.

M Xie, Solder Reliability Models in 4 Point Bend, Intel, 2006.

Strain Distribution

Board Side or Package Side?



Consistency with failure propagation in terms of peeling stress

- Package side: inside-out
- Board side: outside-in

> Failure happens more likely at the package side: higher failure parameter value.

Failure Pattern

Zhou T and Fan XJ. Effect of system design and test conditions on wafer level package drop test reliability. SMTA International. October 2013.

IEEE EPTC 2019 – Singapore

JEDEC drop test standard

- -JESD22-B111, old one, with 15 components
- -JESD22-B111A, new one, with 4 components or 1 component

Finite element modeling

- Input G method, large mass method, input displacement method, direct acceleration method
- -Global/local modeling
- -Peel stress used as indicator for failure

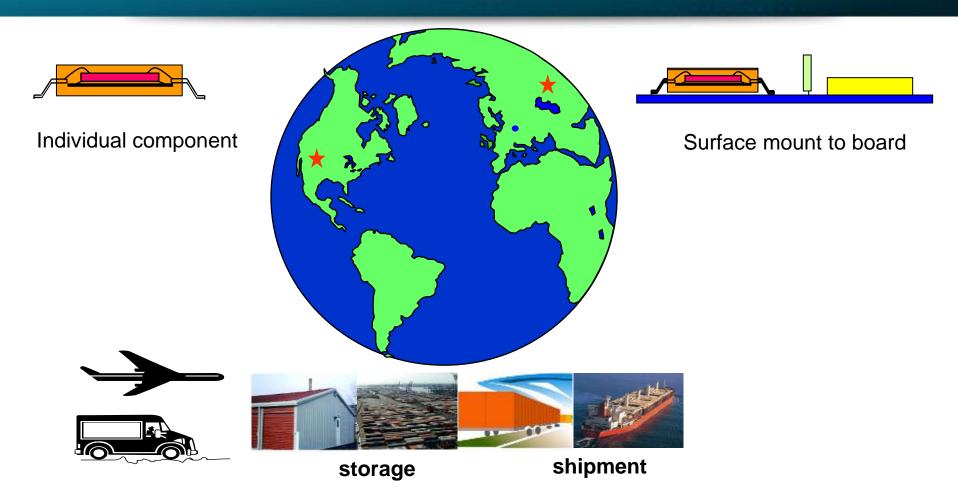
Four-point bending test and modeling

- -Global/local modeling
- -Global with linear elastic but nonlinear geometry analysis
- -Local model with elastic-plastic modeling

Introduction

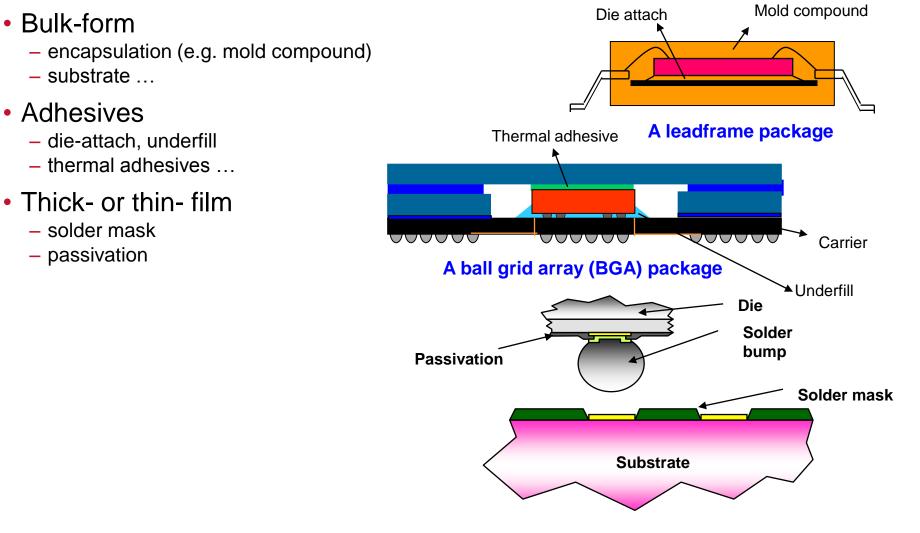
- Temperature Loading
- Mechanical Loading

Moisture Loading

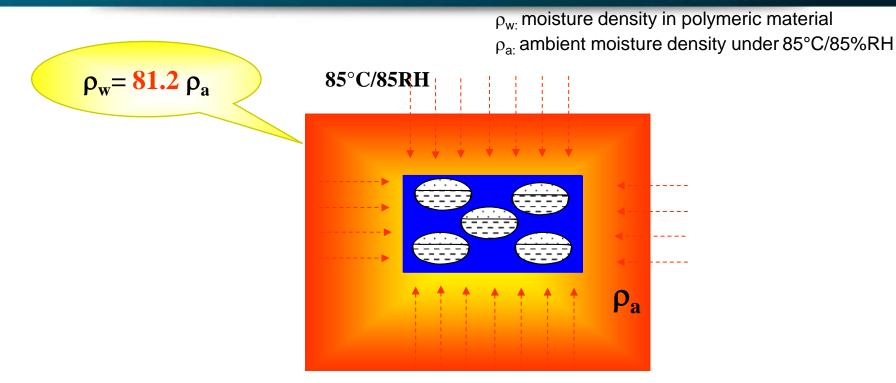

• Electrical Current Loading - Multi-Physics Modeling

Summary

Outline


- Introduction
- Moisture related reliability testing
- Moisture diffusion modeling
- Vapor pressure theory
- Hygroscopic swelling

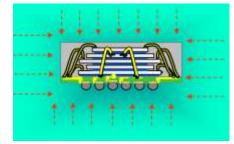
Moisture Absorption of Electronic Packages


• Electronic packages absorb moisture in uncontrolled humid conditions prior to the surface mount on board.

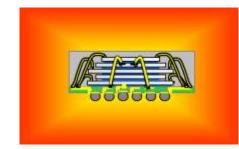
Fan XJ, Suhir, E. (eds.). Moisture Sensitivity of Plastic Packages of IC Devices. Springer, New York, 2010.

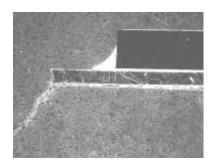
Polymeric materials are susceptible to moisture absorption.

Moisture Absorption in Polymeric Materials

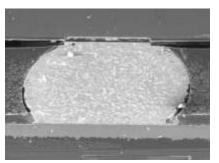

Moisture condensation in a typical underfill

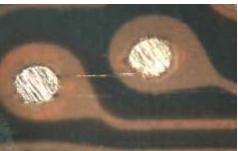
- Under 85°C/85%RH condition, ρ_w = Csat = 2.47e-2 g/cm³ = 81.2 ρ_a (Csat: saturated moisture concentration)
 - Moisture is condensed into liquid state.
 - Moisture exists in micro-pores or free volumes (in bulk or at interface).
 - Moisture vaporizes at reflow, possibly still at mixed liquid/vapor phases.


Fan XJ, Lee SWR, Han Q. Experimental investigations and model study of moisture behaviors in polymeric materials. *Microelectronics Reliability* 49, 861–871. 2009.


Moisture Related Testing

Moisture sensitivity test


Stage 1: Moisture absorption



Stage 2: Soldering reflow

Highly accelerated stress test (HAST)

Biased HAST

Fan XJ, Suhir, E. (eds.). Moisture Sensitivity of Plastic Packages of IC Devices. Springer, New York, 2010.

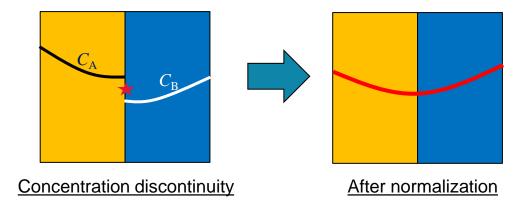
Basic Concepts of Moisture Diffusion

- What is the Relative Humidity (RH)?
 - Defined as vapor pressure ratio associated with temperature T

 $RH = \frac{Actual \ vapor \ pressure of \ the \ air}{Saturated \ vapor \ pressure of \ the \ air} \times 100\%$

- Moisture concentration, C (x, t; T, RH)
 - Mass of moisture per unit volume of substance.
- Diffusion Coefficient / Diffusivity, D(T)
 - Measures the rate of mass diffusion
 - Defined as the amount of mass flux per unit concentration gradient (m²/s)
 - A function of material and temperature
- Saturated Moisture Concentration, C_{sat}(RH, T)
 - The maximum mass of moisture per unit volume of the substance kg/m³.
- Solubility, S(T) Henry's law
 - The ability of the substance to absorb moisture
 - Defined as the maximum mass of moisture per unit volume of the substance per unit pressure (kg/(m³Pa)). C_{sat}
 - A function of material and temperature

$$S = \frac{C_{sat}}{P}$$


where P = ambient pressure in given RH

• Fickian diffusion theory

$$\frac{\partial C}{\partial t} = -\nabla \cdot \left(-D_0 \nabla C \right)$$

C: Concentration, kg/m³; D_0 : diffusivity, m²/s

• Discontinuity at interface

An Overview of Moisture Diffusion Modeling

	Normalized field variable	C _{sat} : temperature- dependent	RH: time- dependent	Non-Henry's Iaw	ANSYS	ABAQUS
Galloway et al. (1997)	C/S	\checkmark	\checkmark	×	×	✓
Wong et al. (1998)	C/C _{sat}	×	×	×	✓	×
Jang et al. (1993)	C/M	×	✓	×	×	×
Wong et al. (2016)	C/C _{sat}	\checkmark	✓	×	×	×
Markus et al. (2016)	С	✓	✓	×	×	×
Chen et al. (2017)	a _w	v	~	√	√	✓
Ma et al. (2019)	C/K	✓	✓	×	v	✓

Ma L, Joshi R, Newman K, X.J. Fan, Improved Finite Element Modeling of Moisture Diffusion Considering Discontinuity at Material Interfaces in Electronic Packages, ECTC 2019

IEEE EPTC 2019 – Singapore

Water Activity Theory

- Water activity a_w is a continuous field variable derived from chemical potential.
- Moisture flux in terms of water activity gradient.

 $\mathbf{J}_{\mathrm{m}} = -K_i D_{0,i} \nabla a_w$

Moisture concentration is given as

 $C = K a_w$

K: generalized solubility, kg/m³

Moisture diffusion equation

$$\frac{\partial (K_i a_w)}{\partial t} = \nabla \cdot (K_i D_{0,i} \nabla a_w)$$

 Water activity is continuous and no normalization is required for multimaterial system.

Chen LB, Zhou J, Chu HW, Zhang GQ, Fan XJ. Modeling Nonlinear Moisture Diffusion in Inhomogeneous Media. *Microelectronics Reliability.* 75 (2017) 162–170. 2017.

IEEE EPTC 2019 – Singapore

•
$$\bar{C} = \frac{C}{C_{\text{sat}}}$$
 is used as field variable.

$$\frac{\partial(C_{sat}\bar{C})}{\partial t} = \nabla \cdot \left(D\nabla(C_{sat}\bar{C}) \right) + G$$

$$C_{sat}\frac{\partial \bar{C}}{\partial t} + \bar{C}\frac{\partial C_{sat}}{\partial T}\frac{\partial T}{\partial t} = \nabla \cdot \left([D]C_{sat}\nabla \bar{C} + \bar{C}\frac{\partial C_{sat}}{\partial T}\nabla T \right) + G$$

where

- *D* : diffusivity matrix
- C (x,y,z,t) : concentration
- G: diffusing substance generation rate per unit volume

-
$$\nabla$$
: gradient operator= $\left\{\frac{\partial}{\partial_x}\frac{\partial}{\partial_y}\frac{\partial}{\partial_z}\right\}$, ∇ ·· divergence operator

- In the above formulation, C_{sat} is considered as temperature-dependent only.
- However, C_{sat} is both time- and temperature- dependent in general.

Henry's Law in Moisture Diffusion

• $C_{\text{sat}} = p_{\text{amb}}S$

$$E_{p} = 4.01 \times 10^{4} \left(\frac{J}{mol}\right) = 0.415 \text{ (ev)}$$

$$p_0 = 3.82 \times 10^{10}$$
 (Pa).

 p_{amb} : ambient partial vapor pressure $p_{amb} = RH p_g(T) = RH p_0 e^{\left(-\frac{E_p}{RT}\right)}$ (p_g is saturated vapor pressure) S : solubility $S(T) = S_0 e^{\left(\frac{E_s}{RT}\right)}$

$$C_{sat} = RH p_0 S_0 e^{\left(\frac{E_s - E_p}{RT}\right)} = RH K_0 e^{\left(\frac{-E_k}{RT}\right)} = RH(t)K(T)$$

$$K = K(T) = K_0 \exp\left(-\frac{E_k}{RT}\right)$$
$$K_0 = p_0 S_0, \qquad E_k = E_p - E_s$$

- In general, C_{sat} (RH (t), T(t)) is both time- and temperature-dependent.
- Therefore, ANSYS cannot solve the problem with varying RH as function of time.

New Normalization Theory - \overline{C}_{K} **Approach**

- $\bar{C}_{K} = \frac{C}{K}$ is used as field variable.
- *K*(*T*): generalized solubility (kg/m³)

$$\frac{\partial (K\bar{C}_k)}{\partial t} = \nabla \cdot \left(D\nabla (K\bar{C}_k) \right)$$

$$\Rightarrow k \frac{\partial \bar{C}_k}{\partial t} + \bar{C}_k \frac{\partial K}{\partial T} \frac{\partial T}{\partial t} = \nabla \cdot \left([D] K \nabla \bar{C}_k + \bar{C}_k \frac{\partial K}{\partial T} \nabla T \right)$$

- The governing equation is exactly identical to the diffusion equation in ANSYS.
- \overline{C}_{K} turns out to be the water activity a_{w} (Chen et al.), which has been proved to be continuous at interface.

Analogy using ANSYS

Field variable and material property input

Field Variable	Material Property	
Ē	C _{sat}	$K = \frac{C_{sat}}{RH}$
$\overline{C}_{\mathbf{k}}$	K	<i>RH</i>

Boundary condition

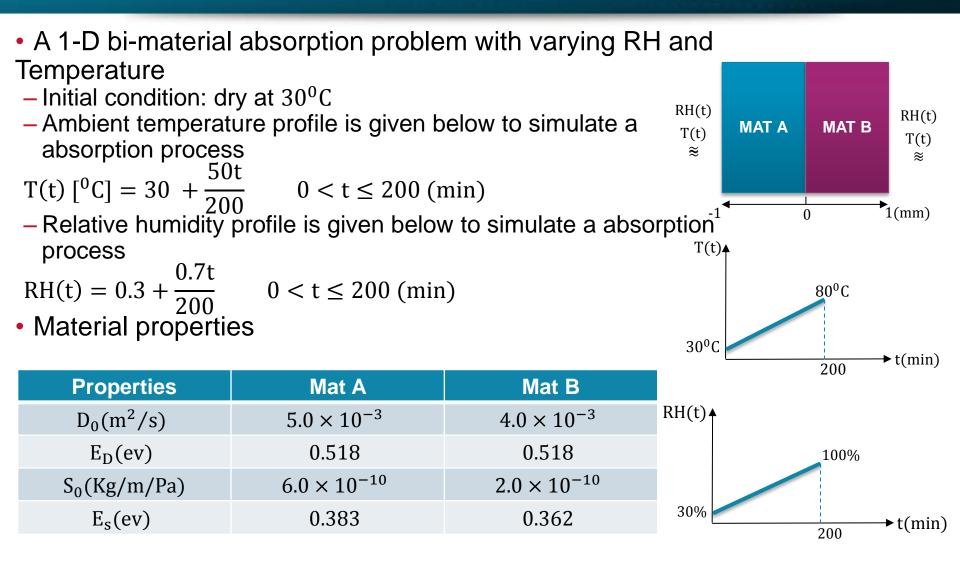
Initial condition

	Ē	$\overline{C}_{\mathbf{k}}$		Ē	$\overline{C}_{\mathbf{k}}$
Absorption	1	RH	Absorption	0	0
Desorption	0	0	Desorption	1 (if fully saturated initially)	1 (if fully saturated initially)
		$\frac{C_{sat}}{K} = RH(t)$		(in fully Saturated initially)	

- In using ANSYS,
 - \overline{C} is replaced by \overline{C}_K .
 - Temperature-dependent material property C_{sat} is replaced by general solubility K.
 - Boundary condition is now changed to \overline{C}_{K} = RH.

Element Options in ANSYS

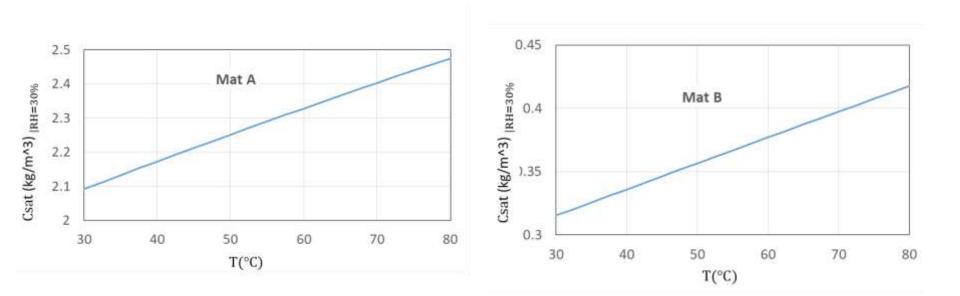
Two different types of element option


Diffusion element

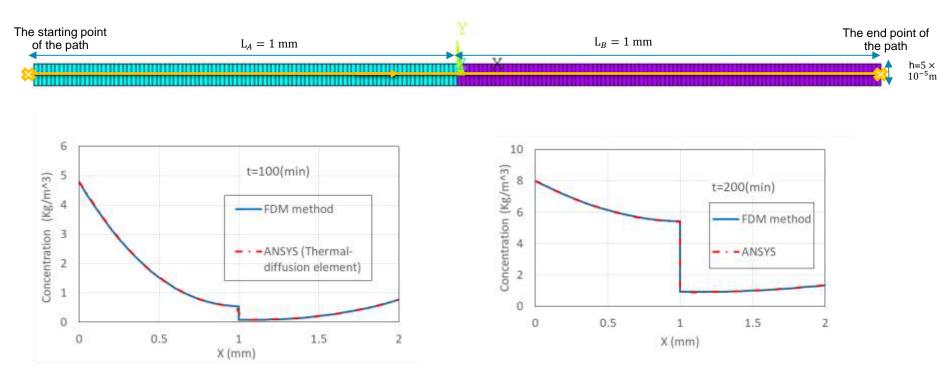
- Plane 238 (2D, Quadratic)
- Solid 239 (3D, Quadratic)
 - Degree of Freedom (DOF) label; CONC

Coupled element

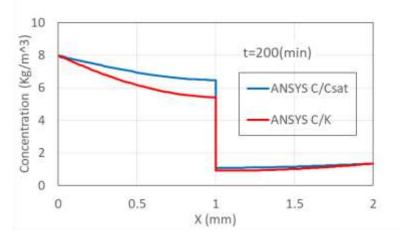
- Plane 223(2D, Quadratic)
- Solid 226(3D, Quadratic)
 - Thermal-diffusion (100010)
 - DOF label: TEMP,CONC
 - Thermal-structural-diffusion (100011)
 - DOF label: TEMP, UX, UY, UZ, CONC
 - Structural-diffusion (100001)
 - DOF label: UX,UY,UZ, CONC
- Since the general diffusion equation in ANSYS involves with temperature derivative with respect to time when K is temperature-dependent, the coupled element (thermal diffusion, or thermal-structural-diffusion) must be used.


Case Study – Varying RH and Temperature

• For this problem, C_{sat} is both time and temperature-dependent.


C_{sat} as a Function of Temperature

• For the given material properties (C_{sat} at 30%RH)

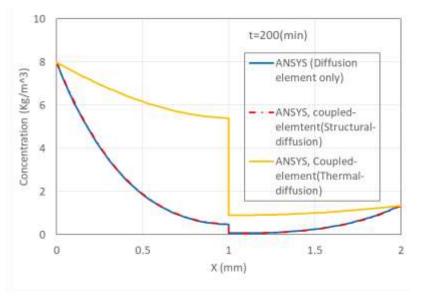

Finite Element Model and Results

- 1-D problem is constructed by a 2-D element strip model.
- Finite difference method (FDM) is used for verification.

Coupled thermal-diffusion element presents correct results.

\overline{C} vs. \overline{C}_k Approach

• \overline{C} (coupled element with thermal-diffusion)


$$C_{sat}\frac{\partial \bar{C}}{\partial t} + \bar{C}\frac{\partial C_{sat}}{\partial T}\frac{\partial T}{\partial t} + \bar{C}\frac{\partial C_{sat}}{\partial t} = \nabla \cdot \left([D]C_{sat}\nabla \bar{C} + \bar{C}\frac{\partial C_{sat}}{\partial T}\nabla T \right)$$

Not included in
ANSYS

• \bar{C}_k (coupled element with thermal-diffusion)

$$K\frac{\partial \bar{C}_{k}}{\partial t} + \bar{C}_{k}\frac{\partial K}{\partial T}\frac{\partial T}{\partial t} = \nabla \cdot \left([D]K\nabla \bar{C}_{k} + \bar{C}_{k}\frac{\partial K}{\partial T}\nabla T \right)$$

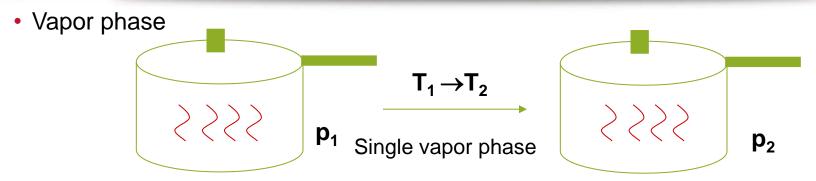
• Since C_{sat} is temperature-dependent and time-dependent, the results obtained by \overline{C} are incorrect.

Comparison Among Different Elements in ANSYS

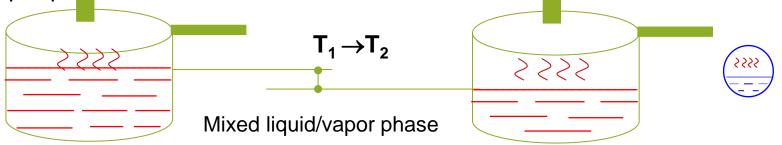
Diffusion element only

$$K\frac{\partial \bar{C}_k}{\partial t} = \nabla \cdot ([D]K\nabla \bar{C}_k)$$

Coupled element with structural-diffusion


$$K\frac{\partial \bar{C}_k}{\partial t} = \nabla \cdot ([D]K\nabla \bar{C}_k)$$

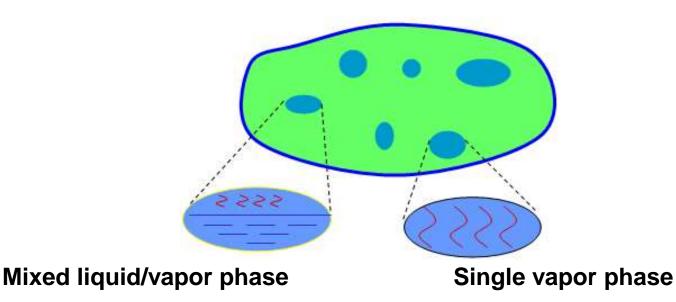
Coupled element with thermal-diffusion


$$K\frac{\partial \bar{C}_k}{\partial t} + \bar{C}_k \frac{\partial K}{\partial T} \frac{\partial T}{\partial t} = \nabla \cdot \left([D] K \nabla \bar{C}_k + \bar{C}_k \frac{\partial K}{\partial T} \nabla T \right)$$

• The Diffusion element only and the coupled element with structural-diffusion option present the same incorrect results.

Vapor Pressure Model - Example: Pressure Cooker

- Moisture in single vapor phase;
- ρ < ρ_g(T), ρ: moisture density over the total volume of cooker; ρ_g(T): saturated moisture vapor density.
- Ideal gas law can be used: p₂=p₁T₂/T₁
- Liquid/vapor phase

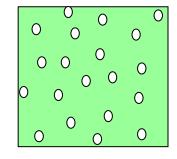


- Moisture in two-phases water/vapor mixed;
- ρ > ρ_g(T) liquid-vapor phase , ρ: moisture density over the total volume of cooker; ρ_g(T): saturated moisture vapor density
- Saturated vapor pressure remains regardless of water level

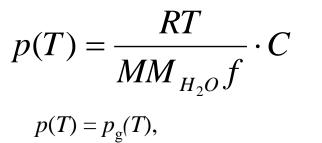
100

Vapor Pressure Model

- Moisture in free-volumes 'free' to vaporize
- Two distinct states
 - Single vapor phase
 - Mixed liquid/vapor phase
- Saturated moisture density $\rho_q(T)$



Vapor Pressure Model


$$\rho = \frac{\mathrm{d}m}{\mathrm{d}V_f} = \frac{\mathrm{d}m}{\mathrm{d}V} \frac{\mathrm{d}V}{\mathrm{d}V_f} = C / f$$

102

- dV_f : void volume in a REV (representative elementary volume)
- dV : total volume of a REV
- dm : total moisture mass
- f : void volume fraction dV_f/dV
- ρ : apaprent moisture density

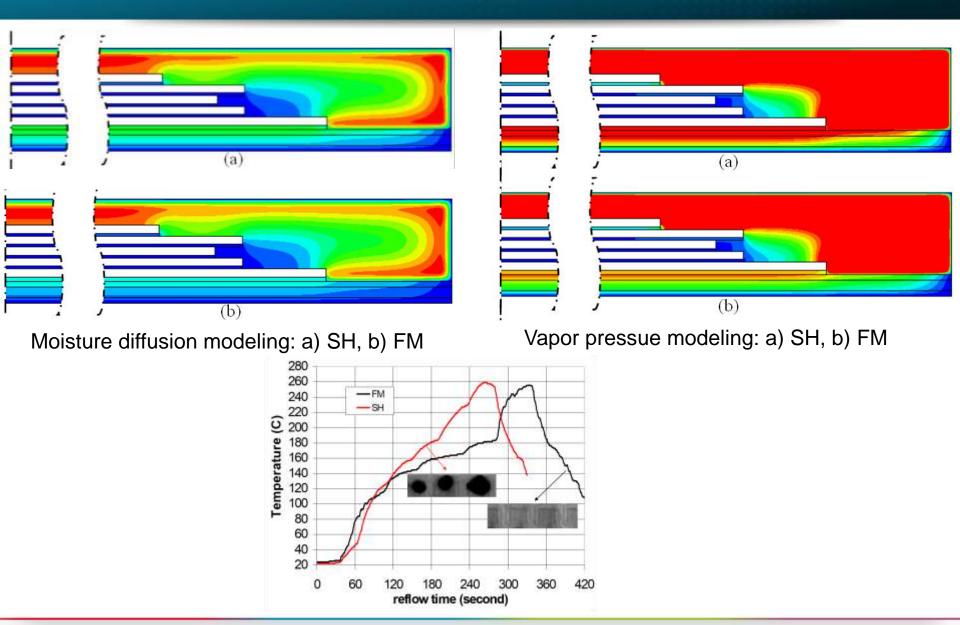
REV

when $C(T) / f < \rho_{\rm g}(T)$

when $C(T) / f \ge \rho_{\rm g}(T)$

Fan XJ, Zhou J, Zhang GQ, Ernst LJ. A micromechanics based vapor pressure model in electronic packages. *ASME Journal of Electronic Packaging* 127 (3), 262-267. 2005.

Xie B, Fan XJ, Shi XQ, Ding H. Direct concentration approach of moisture diffusion and whole field vapor pressure modeling for reflow process: part I – theory and numerical implementation. ASME Journal of Electronic Packaging 131(3), 031010. 2009.


IEEE EPTC 2019 – Singapore

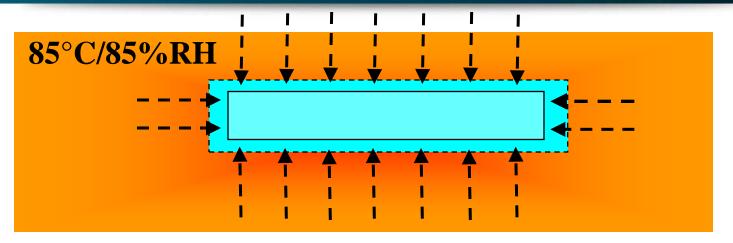
Steam Table - p_g

T(°C)	20	30	40	50	60	70	80
$\rho_g(g/cm^2 \times 10^{-3})$	0.017	0.03	0.05	0.08	0.13	0.2	0.29
pg(MPa)	0.002	0.004	0.007	0.01	0.02	0.03	0.05
T(°C)	90	100	110	120	130	140	150
$\rho_{g}(g/cm^{2} \times 10^{-3})$	0.42	0.6	0.83	1.12	1.5	1.97	2.55
pg(MPa)	0.07	0.1	0.14	0.2	0.27	0.36	0.48
T(°C)	160	170	180	190	200	210	220
$\rho_g(g/cm^2 \times 10^{-3})$	3.26	4.12	5.16	6.4	7.86	9.59	11.62
p _g (MPa)	0.62	0.79	1	1.26	1.55	1.91	2.32
T(°C)	230	240	250	260	270	280	290
$\rho_g(g/cm^2 \times 10^{-3})$	14	16.76	19.99	23.73	28.1	33.19	39.16
p _g (MPa)	2.8	3.35	3.98	4.69	5.51	6.42	7.45

103

Vapor Pressure: Effect of Reflow Profiles

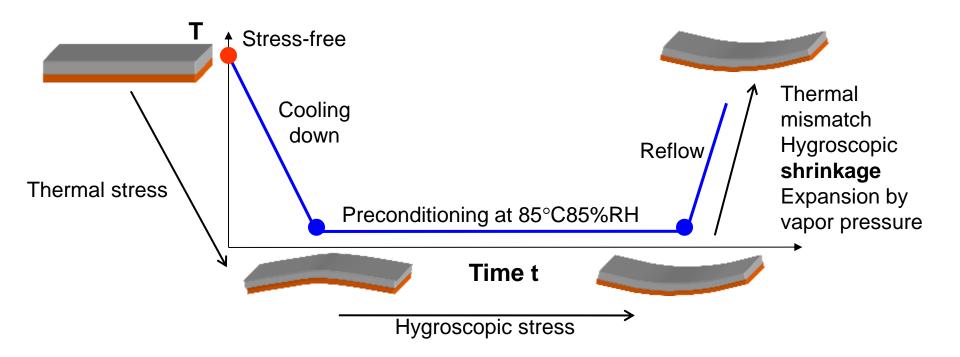
Vapor Pressure Modeling


CSP with thinner substrate


CSP with thicker substrate	

 About 50% reduction on vapor pressure at 250°C in the bottom DA film between two thicknesses of substrate

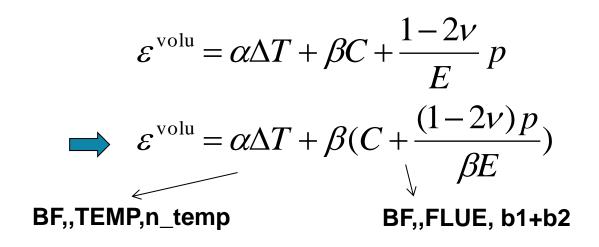
Xie B, Fan XJ, Shi XQ, Ding H. Direct concentration approach of moisture diffusion and whole field vapor pressure modeling for reflow process: part II – application to 3-D ultra-thin stacked-die chip scale packages. *ASME Journal of Electronic Packaging* 131(3), 031011. 2009.


Hygroscopic Swelling

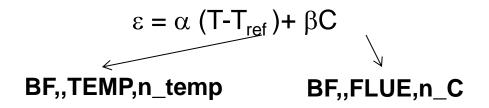
Hygroscopic mismatch is comparable to thermal mismatch in causing mechanical stresses

Temperature-Moisture-Deformation Problems

 How to perform integrated modeling to accurately capture stress developments in each stage?


Material Properties to be Needed

$$\varepsilon_{ij} = \frac{1+\nu}{E}\sigma_{ij} - \frac{\nu}{E}\sigma_{kk}\delta_{ij} + (\alpha\Delta T + \beta C + \frac{1-2\nu}{E}p)\delta_{ij}$$


α: coefficient of thermal expansion (CTE)β: coefficient of hygroscopic swelling (CHS)

C: moisture concentration T: temperature, p: vapor pressure

Implementation in ANSYS

Total volume strain

ANSYS built-in swelling function
$$\mathcal{E}^{^{SW}} = \beta (\Delta C)^n$$

ε^{sw} :swelling strain
 β :swelling coefficient
 C :a fluence

TB,SWELL,1 ! C72=10 FOR ACTIVATION OF USERSW ! EPS=C67*(FLUENCE)^C68 WHERE C67=SWELLING COEFFICIENT TBDATA,72,10

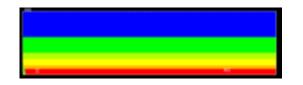
TBDATA,67,β,1

Implementation in ANSYS

TB,SWELL,MAT TBDATA,72,10 TBDATA,67,β,1

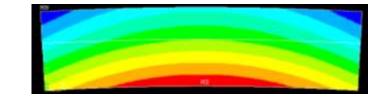
Idread,temp,,,,,moisture,rth

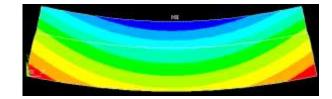
*do,i,1,total_node *get,C,node,i,ntemp **BF,i,FLUE,C** *enddo


BF,,Temp,T_reflow

solve

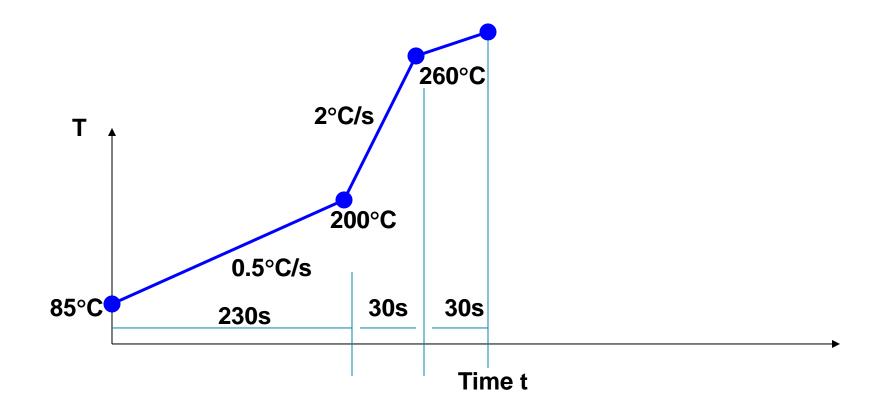
- Moisture diffusion (including desorption) modeling needs to be solved first and separately.
 - ANSYS 17.2 or later provides coupled element
 - Plane 223(2D, Quadratic)
 - Solid 226(3D, Quadratic)
 - Thermal-structural-diffusion (100011)
 - DOF label: TEMP, UX, UY, UZ, CONC


Example: Bi-Material Configuration

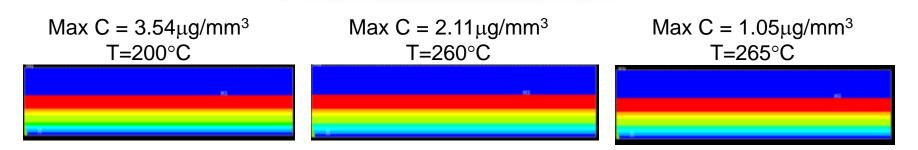

Moisture concentration contours

Deformed shape contours

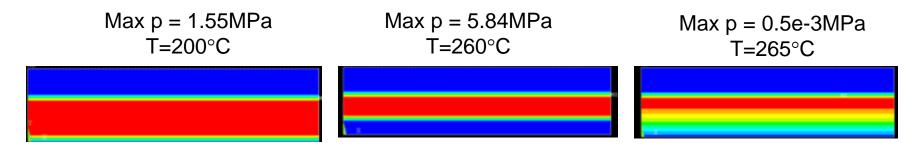
von Mises stress Contours in MC Max stress =4.96MPa

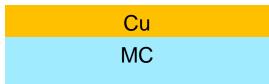

Time = 1hour $@85^{\circ}C/85^{\circ}RH$

Max stress =20.99MPa


Time = 18hour @85°C/85%RH

Fan XJ, Zhao JH. Moisture diffusion and integrated stress analysis in encapsulated microelectronics devices. Proc. 12th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (EuroSimE 2011). pp8. Linz, Austria. April 18-20, 2011.


Example: Reflow Profile Setting


Moisture Concentration and Vapor Pressure Contours

Moisture concentration contours

Vapor pressure contours

Results of Integrated Stress Modeling

200°C

	Von Mises Stress in	Von Mises Stress in
	Epoxy (MPa)	Cu (Mpa)
Т	2.4	8.7
T+H	4.9	17.3
T + H + V	6.3	22.9

260°C

	Von Mises Stress in Epoxy (MPa)	Von Mises Stress in Cu (Mpa)	
Т	6.0	21.9	
T+H	7.2	27.5	
T + H + V	11.2	38.9	

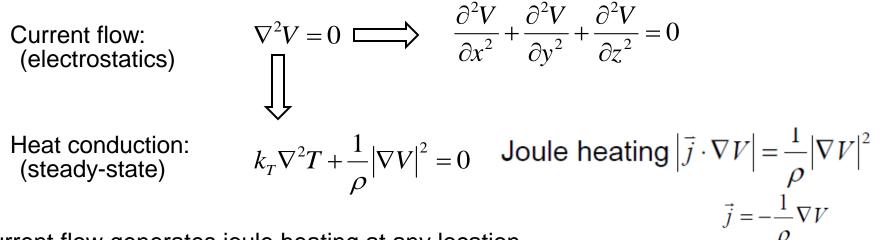
260°C after 30sec hold

	Von Mises Stress in Epoxy (MPa)Von Mises Stre Cu (Mpa)	
Т	6.0	21.9
T+H	6.3	24.7
T + H + V	6.3	24.7

- For a general moisture diffusion problem with temperature-dependent C_{sat} and varying ambient RH and temperature with time
 - $-\overline{C}_k$ must be used and the coupled element with thermal-diffusion or thermal-structural-diffusion option must be applied at the same time.
- ANSYS built-in \overline{C} approach cannot solve the problem with varying RH correctly.
 - ANSYS diffusion element only
 - C_{sat} must be temperature-independent. Temperature gradient is not considered.
 - ANSYS coupled element with structural-diffusion option.
 - C_{sat} must be temperature-independent. Temperature gradient is not considered.
 - ANSYS coupled element with thermal-diffusion option (or thermal-structuraldiffusion) option
 - If \overline{C} is used, RH must be constant.
 - If \overline{C}_k is used, no restriction for any diffusion problems.
- Vapor pressure model
- Thermal-hygro-mechanical modeling

Introduction

- Temperature Loading
- Mechanical Loading
- Moisture and Humidity
- Electrical Current Multi-Physics Modeling

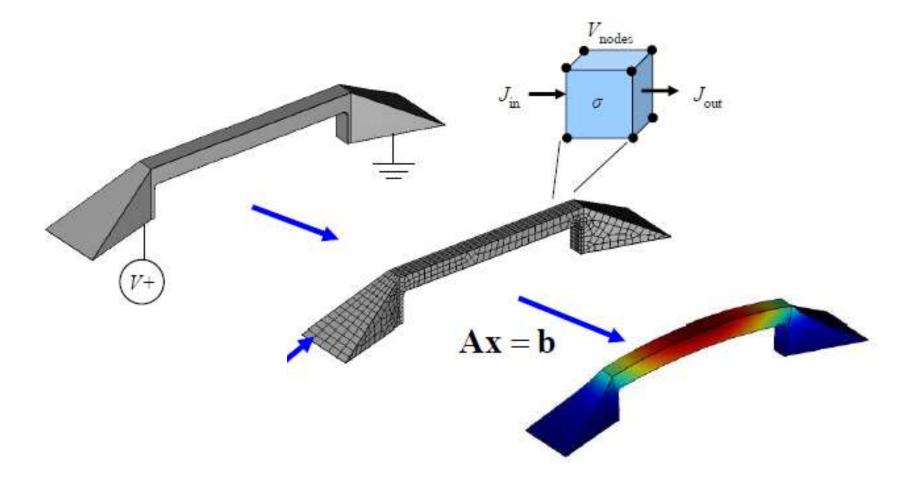

• Summary

Outline

- Electrical-Thermal-Mechanical Modeling
- Electromigration

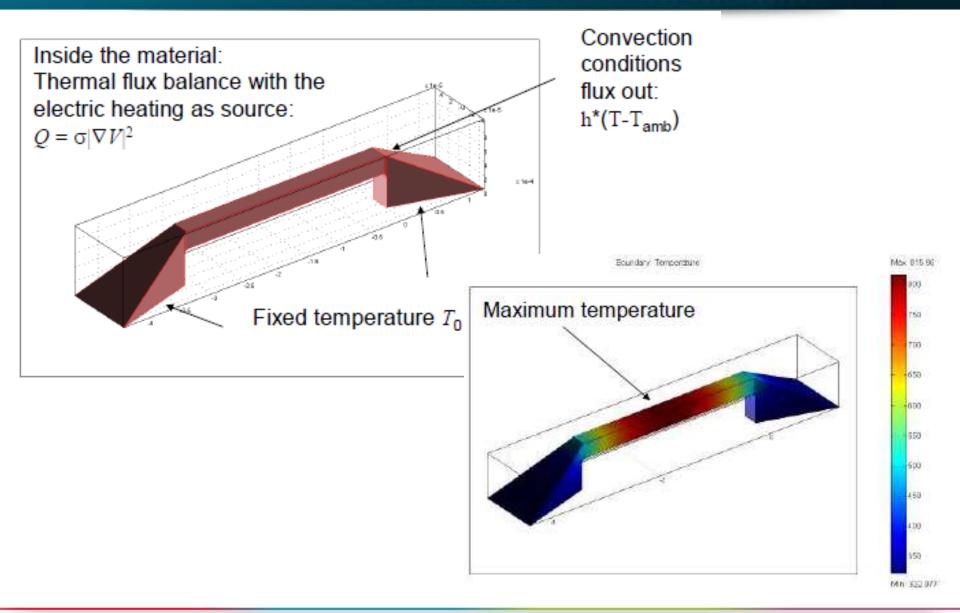
Electrical-Thermal Modeling

Governing equations


- Current flow generates joule heating at any location.
- Joule heat is applied as heat source in heat diffusion in solids.
- Joule heat term:

$$q_0 = \frac{1}{\rho} \left| \nabla V \right|^2$$

- We solve this multi-physics problem one step at a time
 - Both problems are diffusion-type
 - Two problems are sequentially coupled if electric conductivity does not vary with temperature


Example: A Microresistor Beam in MEMS

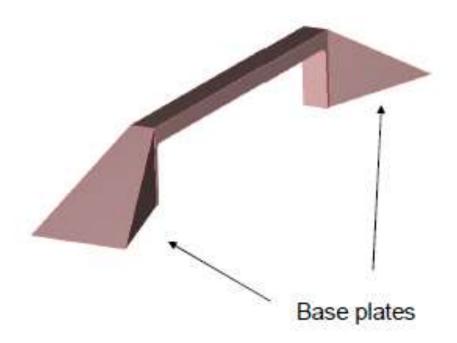
Current flow modeling

COMSOL Multi-Physics Modeling Tutorial.

Thermal Modeling

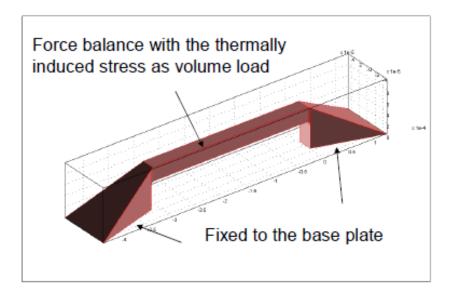
Thermal-Mechanical Modeling

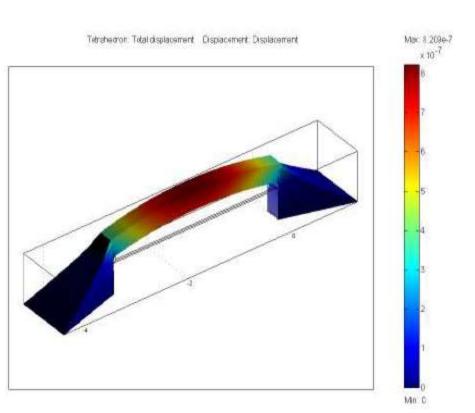
Governing equations

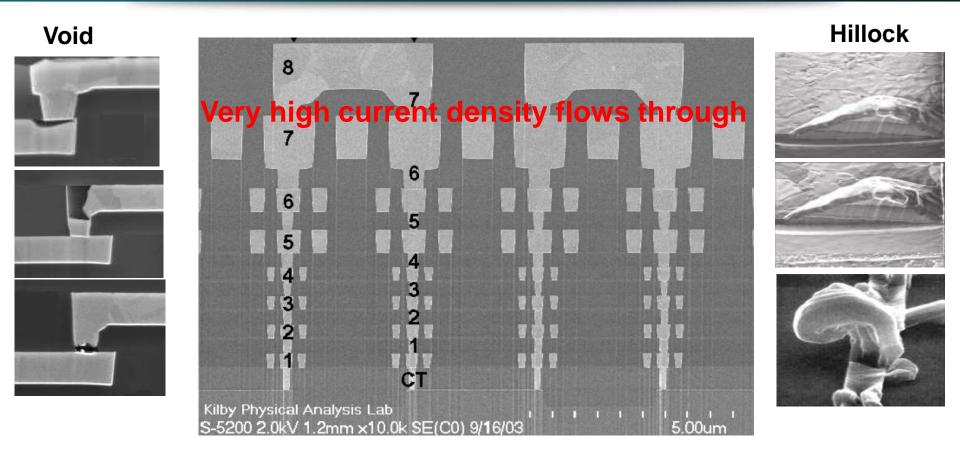

$$\nabla \cdot k[\nabla T] = c_p \rho \frac{\partial T}{\partial t}$$

$$G\nabla^2 u_i + (\lambda + G)e_{,i} - [\frac{E}{1 - 2\nu}\alpha T]_{,j} + X_i = 0$$

- u_i : the component of displacement vector *e*: the total volumetric strain $e=u_{i,i}$
- X_i : the component of body force vector.
- Temperature load is applied in the form of 'body force' in mechanical analysis

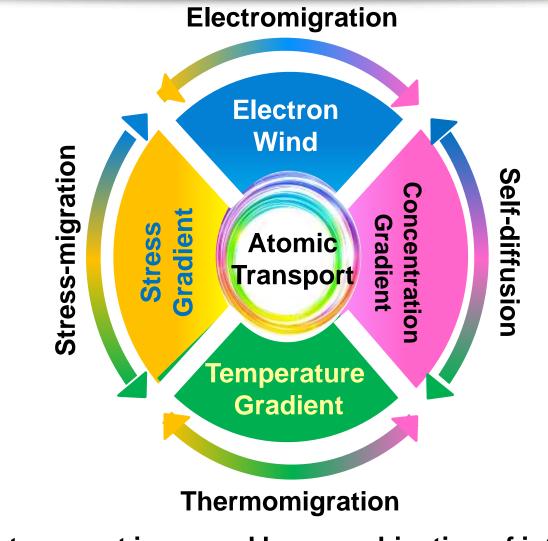

Electrical-Thermal-Mechanical Modeling


- MEMS: microresistor beam modeling
- MEMS actuator application
- Electrical current
 - DC balance for conductive media
 - Fixed potentials generate potential difference ΔV=2V
- Heat transfer
 - Thermal flux balance with the resistive heating as source
- Structural analysis
 - Force balance with the thermally induced stress as volume load


Mechanical Modeling

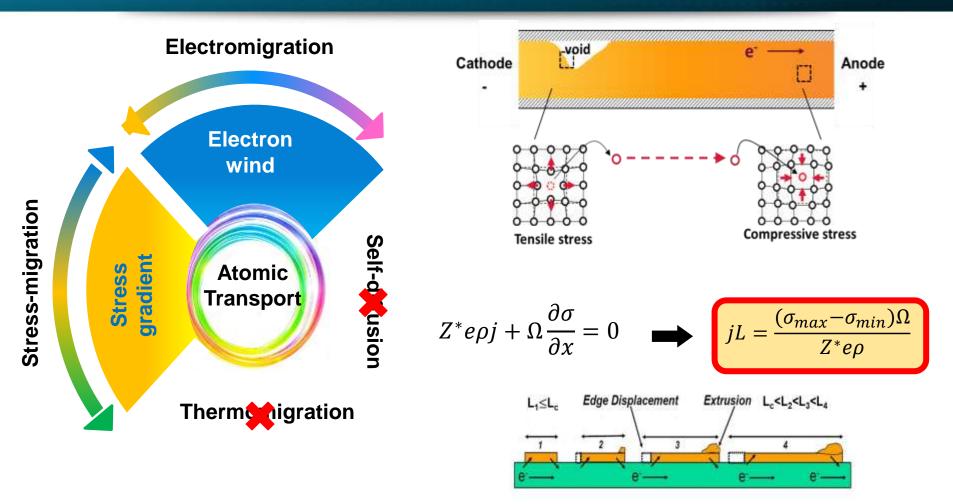
Results, Deformation

What is Electromigration (EM)?


- Electromigration is a process of mass transport in the current-carrying metal under the driving forces generated by electric field.
- Electromigration is the most persistent reliability problem in interconnect technology in semiconductor device.

K.N. Tu: EPTC 2008 short course

Similar to River Flow...


Driving Forces

 The atomic transport is caused by a combination of interacting driving forces that can generate voids at different locations.

Xuejun Fan and Ricky Lee

Blech's Theory (1976)

- EM flux is entirely balanced by the stress-induced counter flux.
- Blech Product, jL, provides a threshold condition of maximum stress, below which, electromigration failure will not occur - mechanical failure.
 I. Blech and C. Herring, APL, 29, 131,

1976. December 4 - 6, 2019

Electromigration – a Coupled, Multi-Physics Problem

Total flux in terms of C_v (vacancy concentration)

$$\boldsymbol{J}_{\mathcal{V}} = \frac{D_{\mathcal{V}}C_{\mathcal{V}}}{k_{B}T} (Z^{*}e\rho\boldsymbol{j} - \frac{k_{B}T}{C_{\mathcal{V}}}\nabla C_{\mathcal{V}} - f\Omega\nabla\sigma + \frac{Q^{*}}{T}\nabla T)$$

- C_v vacancy concentration (m⁻³), D_v diffusivity
- k_B Boltzmann's constant (J/K),
- Z* effective charge number(>0),
- f volume relaxation ratio

- Ω volume of per atom (m³)
- *j* current density (A/m²)
- e elementary charge (C)
- Q* heat of transport (kJ/mol)

EM is a multiphysics coupled field problem involved with electron wind, chemical potential, stress gradient and temperature gradient.

An Overview in Literature

	Flux by self- diffusion	Flux by stress	Source/sin k term	Constraint condition	Stress equilibrium	EM strain in stress/strain
Shatzkes and Lloyd (1986)	✓	×	×	N/A	N/A	N/A
Kirchheim (1992)	×	\checkmark	\checkmark	×	×	×
Korhonen et al. (1993)	×	\checkmark	\checkmark	×	×	×
Clement and Thompson (1995)	×	\checkmark	\checkmark	×	×	×
Sarychev et al. (2000)	\checkmark	\checkmark	\checkmark	N/A	×	\checkmark
Suo et al. (2003, 2011, 2014)	×	\checkmark	\checkmark	×	×	×
Sukharev et al. (2004, 2007)	\checkmark	\checkmark	\checkmark	N/A	✓	×
Maniatty et al. (2016)	×	\checkmark	\checkmark	×	\checkmark	\checkmark

Inconsistent and incomplete solutions appear in literature.

New Theory – General Coupling Model

	Flux by self- diffusion	Flux by stress	Source/sin k term			EM strain in stress/strain
Cui et al. (2019)	✓	✓	✓	✓	✓	✓

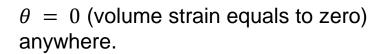
General coupling model for electromigration and one-dimensional numerical solutions

Cite as: J. Appl. Phys. **125**, 105101 (2019); https://doi.org/10.1063/1.5065376 Submitted: 09 October 2018 . Accepted: 19 February 2019 . Published Online: 08 March 2019

Zhen Cui 回, Xuejun Fan 🗐, and Guoqi Zhang 🗐

CrossMar

View Online


Puzzle One

Volume Strain in Confinement

Literature

L

Confined conductor configuration

Present solution

$$u(L) = u(0) = 0 \rightarrow \int_0^L \varepsilon_x dx = 0 \rightarrow \int_0^L \theta dx$$

= 0

$$= 0$$

$$u(L) = u(0) = 0 \rightarrow \int_0^L \varepsilon_x dx = 0 \rightarrow \int_0^L \theta dx$$

= 0

$$\frac{d\sigma_x}{dx} \neq 0$$

$$\frac{d\sigma_x}{dx} \neq 0$$

$$\frac{d\sigma_x}{dx} \neq 0$$

$$\frac{d\sigma_x}{dx} \neq 0$$

$$\frac{d\sigma_x}{dx} = 0$$

Normalized length x/L

• Equilibrium $\left(\frac{d\sigma_x}{dx} = 0\right)$ is violated in the existing literature theory and solutions.

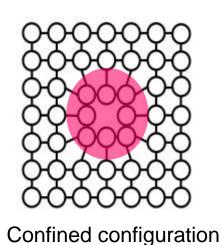
Anode

IEEE EPTC 2019 - Singapore

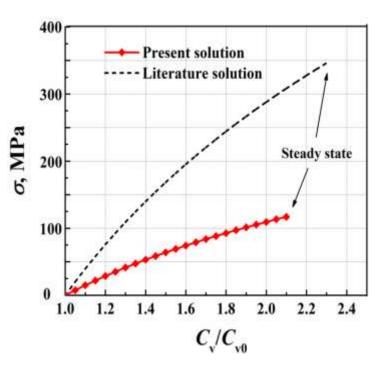
y

Cathode

 $J_v = 0$


Hydrostatic Stress σ vs. Vacancy Concentration C_v

Literature


 $\sigma = \frac{k_B T}{\Omega} \ln(\frac{C_v}{C_{v0}})$

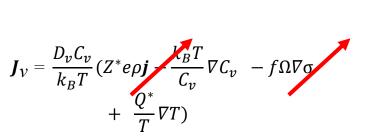
Present solution

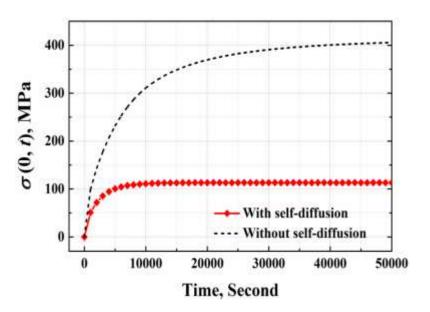
$$\sigma = \frac{2EA}{9(1-\nu)} \left[\frac{1+\nu}{2(1-2\nu)L} \int_0^L \ln\left(\frac{C_{\nu}}{C_{\nu 0}}\right) dx + \ln\left(\frac{C_{\nu}}{C_{\nu 0}}\right) \right]$$

C. Herring, J. Appl. Phys. 21, 437 (1950)

• With the exact σ -C_v equation, the stress level is significantly lower.

Puzzle Three


Effect of Self-Diffusion


Literature

$$j_{v} = -\frac{D_{v}C_{v}}{k_{B}T} \left(f\Omega\frac{\partial\sigma}{\partial x} + Z^{*}e\rho j\right)$$

Present solution

$$j_{v} = -\frac{D_{v}C_{v}}{k_{B}T} \left(\frac{k_{B}T}{C_{v}}\frac{\partial C_{v}}{\partial x} + f\Omega\frac{\partial \sigma}{\partial x} + Z^{*}e\rho j\right)$$

 When concentration gradient is considered, the stress becomes further lower.

IEEE EPTC 2019 - Singapore

J

Stress-Strain Relation (Constitutive Equation)

Literature

Electromigration-induced volume strain

$$\varepsilon_{kk}^{EM} = -\frac{\sigma}{B}$$

$$\boldsymbol{\sigma} = 2G\boldsymbol{\varepsilon} + \lambda \mathrm{tr}(\boldsymbol{\varepsilon})\mathbf{I} - B\mathrm{tr}(\boldsymbol{\varepsilon}^T)\mathbf{I}$$

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^M + \boldsymbol{\varepsilon}^T + \boldsymbol{\varepsilon}^{EM} = 0$$

$$\varepsilon_{kk}^{EM} = g(C_{\nu})$$

$$g(C_{\nu}) = -A \ln\left(\frac{C_{\nu}}{C_{\nu 0}}\right) \qquad A = \frac{k_B T}{B\Omega}$$

$$\varepsilon = \varepsilon^M + \varepsilon^T + \varepsilon^{EM}$$

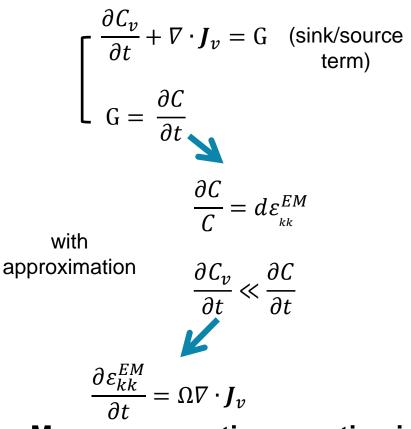
$$\varepsilon^T = \alpha \Delta T \mathbf{I}, \qquad \varepsilon^{EM} = \frac{g(C_{\nu})}{3} \mathbf{I}, \qquad g(C_{\nu}) =$$

$$-A \ln\left(\frac{C_{\nu}}{C_{\nu 0}}\right)$$

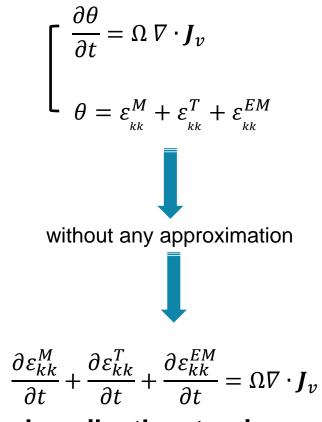
$$\sigma = 2G\varepsilon + \lambda \mathrm{tr}(\varepsilon)\mathbf{I} - B\mathrm{tr}(\varepsilon^T)\mathbf{I} - B\mathrm{tr}(\varepsilon^{EM})\mathbf{I}$$

 A 3-D, general and self-consistent stress-strain constitutive equation is obtained.

IEEE EPTC 2019 - Singapore


Xuejun Fan and Ricky Lee

Present solution


Puzzle Five

Atomic Transport Equation

Literature

Present solution

 Mass conservation equation is used to describe the atomic transport. Thus, the sink/source term is considered naturally.

New Theory – General Coupling Model

Mass conservation equation:

$$\frac{\partial \theta}{\partial t} = \Omega \,\nabla \cdot \boldsymbol{J}_{v}$$
$$\boldsymbol{J}_{v} = -D_{v} \nabla C_{v} + D_{v} C_{v} \frac{Z^{*} e \rho \boldsymbol{j}}{k_{B}T} - D_{v} C_{v} \frac{\Omega}{k_{B}T} \nabla \sigma + D_{v} C_{v} \frac{Q^{*}}{k_{B}T} \nabla T$$

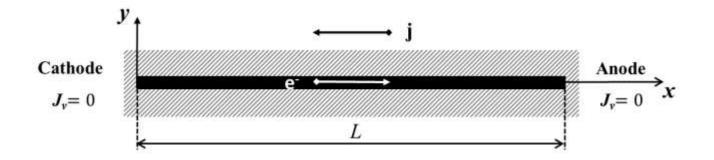
Constitutive equation:

$$\theta = \operatorname{tr}(\boldsymbol{\varepsilon}), \qquad \boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^{M} + \boldsymbol{\varepsilon}^{T} + \boldsymbol{\varepsilon}^{EM}$$
$$\boldsymbol{\varepsilon}^{T} = \alpha \Delta T \mathbf{I}, \qquad \boldsymbol{\varepsilon}^{EM} = \frac{g(C_{\nu})}{3} \mathbf{I}, \qquad g(C_{\nu}) = -A \ln\left(\frac{C_{\nu}}{C_{\nu 0}}\right)$$
$$\boldsymbol{\sigma} = 2G\boldsymbol{\varepsilon} + \lambda \operatorname{tr}(\boldsymbol{\varepsilon})\mathbf{I} - B \operatorname{tr}(\boldsymbol{\varepsilon}^{T})\mathbf{I} - B \operatorname{tr}(\boldsymbol{\varepsilon}^{EM})\mathbf{I}$$
$$\boldsymbol{\sigma} = \operatorname{tr}(\frac{\boldsymbol{\sigma}}{3})$$

Field equations:

$$\nabla \cdot \boldsymbol{\sigma} + \boldsymbol{F} = 0 \qquad \boldsymbol{\varepsilon} = \frac{1}{2} (\nabla \boldsymbol{u} + \boldsymbol{u} \nabla)$$
$$\nabla \cdot \boldsymbol{j} = 0, \qquad \boldsymbol{j} = \frac{\boldsymbol{E}}{\rho} = -\frac{\nabla V}{\rho}$$
$$k \nabla^2 T + \boldsymbol{j} \cdot \boldsymbol{E} = 0$$

Cui Z, et al., JAP, 125, 2019 December 4 – 6, 2019


137

Totally fixed configuration – 1-D problem

Assumptions

-1-D problem:
$$\varepsilon_y = \varepsilon_z = \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{xz} = 0$$

- -Current density j is constant and in negative x-axis direction.
- -Temperature is constant no temperature gradient.
- -Perfectly blocking condition for C_v : J_v (0,t)= J_v (L,t)= 0.
- -Mechanically totally fixed: u(L,t) = u(0,t) = 0

1-D Governing Equations

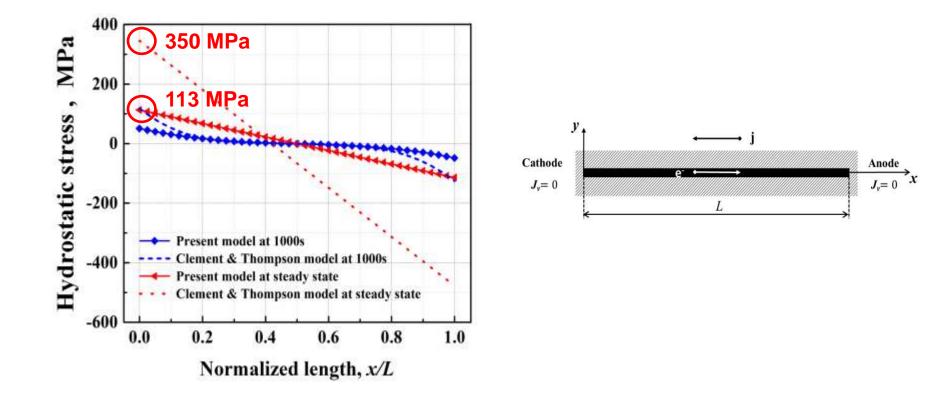
$$\frac{\partial \theta}{\partial t} + D_{v}\Omega[\frac{\partial \left(\frac{\partial C_{v}}{\partial x} + \frac{f\Omega C_{v}}{k_{B}T}\frac{\partial \sigma}{\partial x} + \frac{Z^{*}e\rho jC_{v}}{k_{B}T}\right)}{\partial x}] = 0$$

$$\theta = -A\ln(\frac{C_{v}}{C_{v0}}) + \frac{3(1-2v)\sigma}{E}$$

$$\sigma = \frac{2EA}{9(1-v)}\ln(\frac{C_{v}}{C_{v0}}) + \frac{1+v}{3(1-v)}\sigma_{x}$$

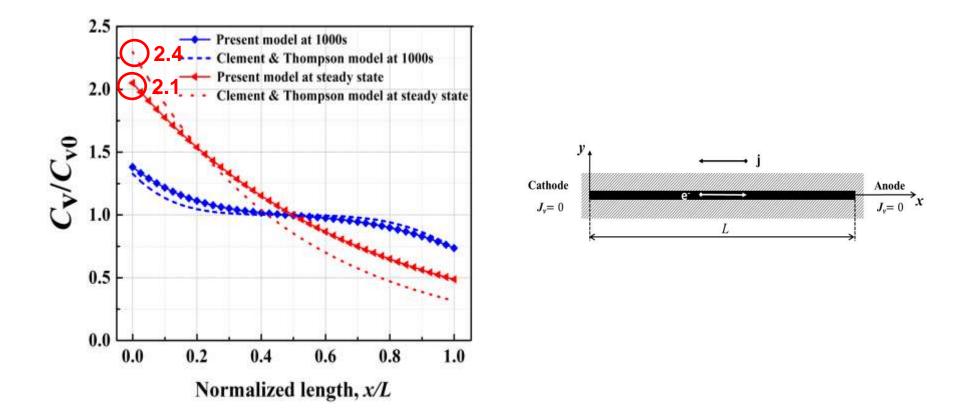
$$\sigma_{x} = \frac{(1-v)E}{(1+v)(1-2v)}\varepsilon_{x} + \frac{EA}{3(1-2v)}\ln(\frac{C_{v}}{C_{v0}})$$

$$\frac{d\sigma_{x}}{dx} = 0$$

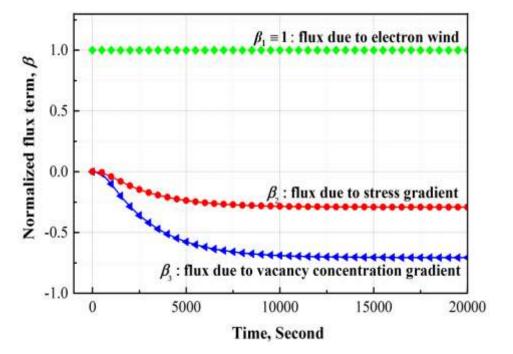

$$\int_{0}^{L} \varepsilon_{x}dx = 0 \qquad u(L,t) = u(0,t) = 0 \rightarrow \int_{0}^{L} \varepsilon_{x}dx = 0 \rightarrow \int_{0}^{L} \theta dx = 0$$

$$\frac{\partial C_{v}}{\partial t} - \frac{1}{L}\int_{0}^{L}\frac{\partial C_{v}}{\partial t}dx = \frac{3(1-v)D_{v}C_{v}\Omega}{(1+v)A}\left[\left(1 + \frac{2EA\Omega}{9(1-v)k_{B}T}\right)\frac{\partial^{2}C_{v}}{\partial x^{2}} + \frac{Z^{*}e\rho j}{k_{B}T}\frac{\partial C_{v}}{\partial x}\right]$$

$$\sigma = \frac{2EA}{9(1-v)}\left[\frac{1+v}{2(1-2v)L}\int_{0}^{L}\ln(\frac{C_{v}}{C_{v0}})dx + \ln(\frac{C_{v}}{C_{v0}})\right]$$


Length of interconnect (L)	50 μm	Temperature (T)	500K
Young's modulus (<i>E</i>)	70×10 ⁹ Pa	Poisson ratio (v)	0.3
Atomic diffusivity (<i>D_a</i>)	3×10 ⁻¹⁶ m ² /s	Vacancy diffusivity (D_v)	3×10 ⁻⁹ m²/s
Atomic volume (Ω)	1.66×10 ⁻²⁹ m ³	Initial vacancy concentration (C _{v0})	6.02×10 ²¹ m ⁻³
$D_{\nu}C_{\nu}=D_{a}C_{a},$	$C_a = 1/\Omega$	Electrical resistivity (ρ)	4.88×10⁻ ⁸ Ohm⋅m
Current density (j)	10 ¹⁰ A/m ²	Elementary charge (e)	1.60×10 ⁻¹⁹ C
Effective charge number (Z*)	3.5	Boltzmann constant (k _B)	1.38×10^{-23} J/K
Coefficient of electromigration strain (A)	0.0071		

Numerical Results (σ)


• The present results show significant differences with the previous results, particularly in the magnitude of hydrostatic stress. (113 MPa vs. 350 MPa: 30% of the stress value obtained).

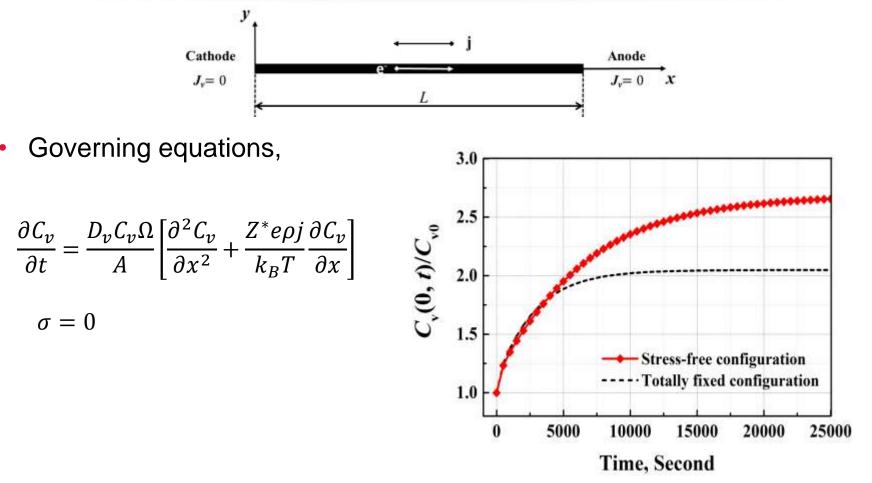
Numerical Results (C_v)

 Vacancy concentration is comparable with the previous results, even though stress is significantly lower.

Effect of Self-Diffusion

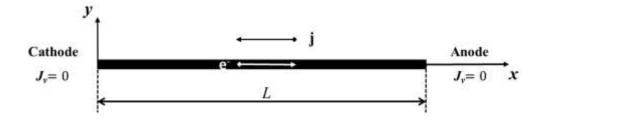
• Normalized flux term,

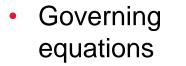
$$\beta_1 = \frac{F_E(x,t)}{Z^*e\rho j}, \quad \beta_2 = \frac{F_s(x,t)}{Z^*e\rho j}, \quad \beta_3 = \frac{F_c(x,t)}{Z^*e\rho j}$$

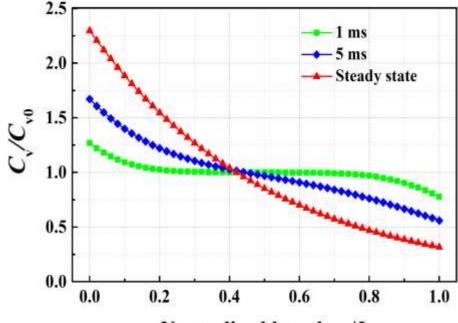

where

$$F_E = Z^* e
ho j$$
, $F_S = -\Omega rac{\partial \sigma}{\partial x}$, $F_C =$

$$-\frac{k_BT}{C_v}\frac{\partial C_v}{\partial x}$$

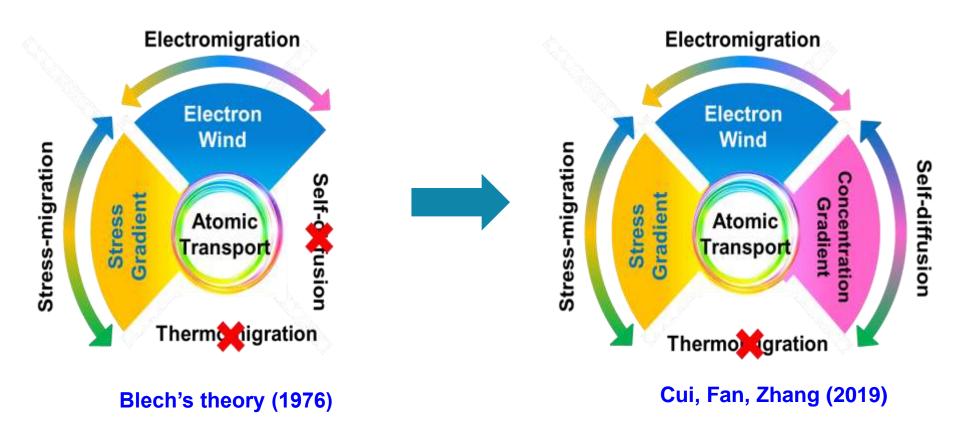

Self-diffusion plays more important role than stress in electromigration.


Numerical Results: Stress-Free Condition


- Electromigration happens on the same time-scale.
- Electromigration is resisted by the counter force due to concentration gradient.

Stress-Free Condition (Lloyd's Results)

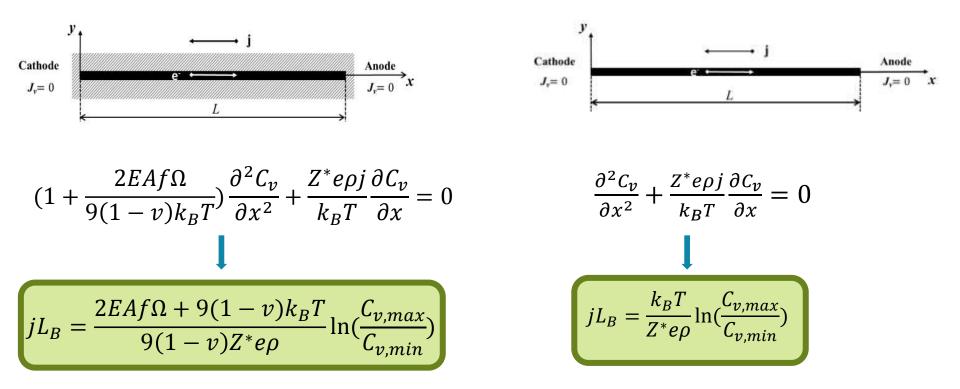
$$\frac{\partial C_{\nu}}{\partial t} = D_{\nu} \left[\frac{\partial^2 C_{\nu}}{\partial x^2} + \frac{Z^* e \rho j}{k_B T} \frac{\partial C_{\nu}}{\partial x} \right]$$



Normalized length, x/L

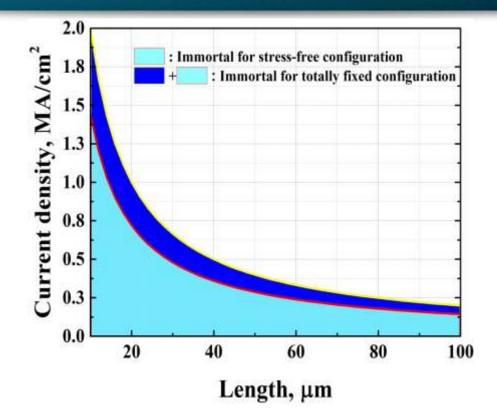
- Electromigration happens in miliseconds.
- 10⁷ orders difference compared to the confined configuration.

M. Shatzkes and J. Lloyd, JAP, 59, 3890, 1986.


Revisit – Blech's Theory

 The effect of thermomigration is not taken into the consideration for the purpose of comparison.

IEEE EPTC 2019 - Singapore



- The product of jL, is obtained for both confined and stress-free conditions.
- The vacancy concentration is used as threshold condition for failure criterion.

Stress-free Configuration

Threshold Product Curve

- The confined metal line can sustain the higher current density than that of stress-free condition.
- The experimental results are consistent with the present theoretical predictions.
 - In Blech's experiment, the measured threshold product for the uncovered metal line is lower than that for the confined metal line.
 I. A. Blech, JAP. 47, 1203,1976.

IEEE EPTC 2019 – Singapore

- Electrical-thermal-mechanical modeling sequential approach
- Electromigration
 - A 3-D general coupling model for electromigration is developed.
 - 1D solution for the confined configuration is obtained.
 - Mechanical stress-based failure criterion may not be valid anymore.
 - Blech's theory is revisited and reanalyzed.
 - Vacancy concentration, instead of hydrostatic stress, used for failure criterion – a departure from the original view.
 - The new predictions are consistent with experimental observations.

Introduction

- Temperature Loading
- Mechanical Loading
- Moisture Loading
- Electrical Current Loading Multi-Physics Modeling

Summary

Module 1 – Temperature Loading

• Thermal mismatch vs. temperature gradient

Analytical solution

- -Layered structure (stress, warpage, effective CTE)
- -Cylindrical structure (TSV)
- Die-level thermal stress thermal stress in TSV
- Package-level thermal stress problem warpage
- Chip-package interaction (CPI) submodeling technique

Board level thermal stress problem

- -Solder ball thermal cycling (Flip chip BGA, WLP)
- -Creep equations
- -Best method for practice
 - Initial stress free condition; full model vs. global/local model; worst solder ball location, volume averaging

Stress singularity of joint materials

JEDEC drop test standard

- -JESD22-B111, old one, with 15 components
- -JESD22-B111A, new one, with 4 components or 1 component

Finite element modeling

- Input G method, large mass method, input displacement method, direct acceleration method
- -Global/local modeling
- -Peel stress used as indicator for failure

Four-point bending test and modeling

- -Global/local modeling
- -Global with linear elastic but nonlinear geometry analysis
- -Local model with elastic-plastic modeling

Module 3 – Moisture Diffusion and Vapor Pressure

- For a general moisture diffusion problem with temperature-dependent C_{sat} and varying ambient RH and temperature with time
 - $-\overline{C}_k$ must be used and the coupled element with thermal-diffusion or thermal-structural-diffusion option must be applied at the same time.

• ANSYS built-in \overline{C} approach cannot solve the problem with varying RH correctly.

- ANSYS diffusion element only
 - C_{sat} must be temperature-independent. Temperature gradient is not considered.
- ANSYS coupled element with structural-diffusion option.
 - C_{sat} must be temperature-independent. Temperature gradient is not considered.
- ANSYS coupled element with thermal-diffusion option (or thermal-structuraldiffusion) option
 - If \overline{C} is used, RH must be constant.
 - If \overline{C}_k is used, no restriction for any diffusion problems.

• Vapor pressure model.

Thermal-hygro-mechanical modeling.

Module 4 – Electrical Current Loading

 Electrical-thermal-mechanical modeling – sequential approach

Electromigration

- -A 3-D general coupling model for electromigration is developed.
- -1D solution for the confined configuration is obtained.
- -Mechanical stress-based failure criterion may not be valid anymore.
- -Blech's theory is revisited and reanalyzed.
- Vacancy concentration, instead of hydrostatic stress, used for failure criterion – a departure from the original view.
- -The new predictions are consistent with experimental observations.

Thank you for your attention.

IEEE EPTC 2019 – Singapore